//22_descriptor_layout.cpp #define GLFW_INCLUDE_VULKAN #define GLM_FORCE_RADIANS #include #include #include #include #include #include #include #include #include #include #include #include #include #include const int WIDTH = 800; const int HEIGHT = 600; const int MAX_FRAMES_IN_FLIGHT = 2; const std::vector validationLayers = { "VK_LAYER_KHRONOS_validation" }; const std::vector deviceExtensions = { VK_KHR_SWAPCHAIN_EXTENSION_NAME }; #ifdef NDEBUG const bool enableValidationLayers = false; #else const bool enableValidationLayers = true; #endif VkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) { auto func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT"); if (func != nullptr) { return func(instance, pCreateInfo, pAllocator, pDebugMessenger); } else { return VK_ERROR_EXTENSION_NOT_PRESENT; } } void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) { auto func = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT"); if (func != nullptr) { func(instance, debugMessenger, pAllocator); } } struct QueueFamilyIndices { uint32_t graphicsFamily = -1; uint32_t presentFamily = -1; bool isComplete() { return graphicsFamily >= 0 && presentFamily >= 0; } }; struct SwapChainSupportDetails { VkSurfaceCapabilitiesKHR capabilities; std::vector formats; std::vector presentModes; }; struct Vertex { glm::vec2 pos; glm::vec3 color; //绑定描述 static VkVertexInputBindingDescription getBindingDescription() { VkVertexInputBindingDescription bindingDescription = {}; bindingDescription.binding = 0; bindingDescription.stride = sizeof(Vertex); bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; return bindingDescription; } //属性描述 static std::array getAttributeDescriptions() { std::array attributeDescriptions = {}; attributeDescriptions[0].binding = 0; attributeDescriptions[0].location = 0; attributeDescriptions[0].format = VK_FORMAT_R32G32_SFLOAT; attributeDescriptions[0].offset = offsetof(Vertex, pos); attributeDescriptions[1].binding = 0; attributeDescriptions[1].location = 1; attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT; attributeDescriptions[1].offset = offsetof(Vertex, color); return attributeDescriptions; } }; struct UniformBufferObject { glm::mat4 model; glm::mat4 view; glm::mat4 proj; }; const std::vector vertices = { {{-0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}}, {{0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}}, {{0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}}, {{-0.5f, 0.5f}, {1.0f, 1.0f, 1.0f}} }; const std::vector indices = { 0, 1, 2, 2, 3, 0 }; class HelloTriangleApplication { public: void run() { initWindow(); initVulkan(); mainLoop(); cleanup(); } private: GLFWwindow* window; VkInstance instance; VkDebugUtilsMessengerEXT debugMessenger; VkSurfaceKHR surface; VkPhysicalDevice physicalDevice = VK_NULL_HANDLE; VkDevice device; VkQueue graphicsQueue; VkQueue presentQueue; VkSwapchainKHR swapChain; std::vector swapChainImages; VkFormat swapChainImageFormat; VkExtent2D swapChainExtent; std::vector swapChainImageViews; VkRenderPass renderPass; VkDescriptorSetLayout descriptorSetLayout; VkPipelineLayout pipelineLayout; VkPipeline graphicsPipeline; std::vector swapChainFramebuffers; VkCommandPool commandPool; std::vector commandBuffers; VkSemaphore imageAvailableSemaphore; VkSemaphore renderFinishedSemaphore; std::vector imageAvailableSemaphores; std::vector renderFinishedSemaphores; std::vector inFlightFences; std::vector imagesInFlight; size_t currentFrame = 0; VkBuffer vertexBuffer; VkDeviceMemory vertexBufferMemory; VkBuffer indexBuffer; VkDeviceMemory indexBufferMemory; VkBuffer uniformBuffer; VkDeviceMemory uniformBufferMemory; VkDescriptorPool descriptorPool; VkDescriptorSet descriptorSet; void initWindow() { glfwInit(); glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API); //glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE); window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan_Day23_descriptor_layout", nullptr, nullptr); glfwSetWindowUserPointer(window, this); glfwSetWindowSizeCallback(window, HelloTriangleApplication::onWindowResized); } void initVulkan() { createInstance(); setupDebugMessenger(); createSurface(); pickPhysicalDevice(); createLogicalDevice(); createSwapChain(); createImageViews(); createRenderPass(); createDescriptorSetLayout(); createGraphicsPipeline(); createFramebuffers(); createCommandPool(); createVertexBuffer(); createIndexBuffer(); createUniformBuffer(); createDescriptorPool(); createDescriptorSet(); createCommandBuffers(); createSemaphores(); } void mainLoop() { while (!glfwWindowShouldClose(window)) { glfwPollEvents(); updateUniformBuffer(); drawFrame(); } vkDeviceWaitIdle(device); } void cleanup() { cleanupSwapChain(); vkDestroyDescriptorPool(device, descriptorPool, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkDestroyBuffer(device, uniformBuffer, nullptr); vkFreeMemory(device, uniformBufferMemory, nullptr); vkDestroyBuffer(device, indexBuffer, nullptr); vkFreeMemory(device, indexBufferMemory, nullptr); vkDestroyBuffer(device, vertexBuffer, nullptr); vkFreeMemory(device, vertexBufferMemory, nullptr); for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { vkDestroySemaphore(device, renderFinishedSemaphores[i], nullptr); vkDestroySemaphore(device, imageAvailableSemaphores[i], nullptr); vkDestroyFence(device, inFlightFences[i], nullptr); } vkDestroyCommandPool(device, commandPool, nullptr); vkDestroyDevice(device, nullptr); if (enableValidationLayers) { DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr); } vkDestroySurfaceKHR(instance, surface, nullptr); vkDestroyInstance(instance, nullptr); glfwDestroyWindow(window); glfwTerminate(); } void updateUniformBuffer() { static auto startTime = std::chrono::high_resolution_clock::now(); auto currentTime = std::chrono::high_resolution_clock::now(); float time = std::chrono::duration_cast(currentTime - startTime).count() / 1000.0f; UniformBufferObject ubo = {}; ubo.model = glm::rotate(glm::mat4(1.0f), time * glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f)); ubo.view = glm::lookAt(glm::vec3(2.0f, 2.0f, 2.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f)); ubo.proj = glm::perspective(glm::radians(45.0f), swapChainExtent.width / (float)swapChainExtent.height, 0.1f, 10.0f); ubo.proj[1][1] *= -1; void* data; vkMapMemory(device, uniformBufferMemory, 0, sizeof(ubo), 0, &data); memcpy(data, &ubo, sizeof(ubo)); vkUnmapMemory(device, uniformBufferMemory); } void drawFrame() { vkWaitForFences(device, 1, &inFlightFences[currentFrame], VK_TRUE, UINT64_MAX); uint32_t imageIndex; VkResult result = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex); if (result == VK_ERROR_OUT_OF_DATE_KHR) { recreateSwapChain(); return; } else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) { throw std::runtime_error("failed to acquire swap chain image!"); } if (imagesInFlight[imageIndex] != VK_NULL_HANDLE) { vkWaitForFences(device, 1, &imagesInFlight[imageIndex], VK_TRUE, UINT64_MAX); } imagesInFlight[imageIndex] = inFlightFences[currentFrame]; VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; VkSemaphore waitSemaphores[] = { imageAvailableSemaphores[currentFrame] }; VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT }; submitInfo.waitSemaphoreCount = 1; submitInfo.pWaitSemaphores = waitSemaphores; submitInfo.pWaitDstStageMask = waitStages; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &commandBuffers[imageIndex]; VkSemaphore signalSemaphores[] = { renderFinishedSemaphores[currentFrame] }; submitInfo.signalSemaphoreCount = 1; submitInfo.pSignalSemaphores = signalSemaphores; vkResetFences(device, 1, &inFlightFences[currentFrame]); if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFences[currentFrame]) != VK_SUCCESS) { throw std::runtime_error("failed to submit draw command buffer!"); } VkPresentInfoKHR presentInfo = {}; presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; presentInfo.waitSemaphoreCount = 1; presentInfo.pWaitSemaphores = signalSemaphores; VkSwapchainKHR swapChains[] = { swapChain }; presentInfo.swapchainCount = 1; presentInfo.pSwapchains = swapChains; presentInfo.pImageIndices = &imageIndex; result = vkQueuePresentKHR(presentQueue, &presentInfo); if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) { recreateSwapChain(); } else if (result != VK_SUCCESS) { throw std::runtime_error("failed to present swap chain image!"); } currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT; } static void onWindowResized(GLFWwindow* window, int width, int height) { if (width == 0 || height == 0) return; HelloTriangleApplication* app = reinterpret_cast(glfwGetWindowUserPointer(window)); app->recreateSwapChain(); } void cleanupSwapChain() { for (auto framebuffer : swapChainFramebuffers) { vkDestroyFramebuffer(device, framebuffer, nullptr); } vkFreeCommandBuffers(device, commandPool, static_cast(commandBuffers.size()), commandBuffers.data()); vkDestroyPipeline(device, graphicsPipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyRenderPass(device, renderPass, nullptr); for (auto imageView : swapChainImageViews) { vkDestroyImageView(device, imageView, nullptr); } vkDestroySwapchainKHR(device, swapChain, nullptr); } void recreateSwapChain() { int width = 0, height = 0; glfwGetFramebufferSize(window, &width, &height); while (width == 0 || height == 0) { glfwGetFramebufferSize(window, &width, &height); glfwWaitEvents(); } vkDeviceWaitIdle(device); cleanupSwapChain(); createSwapChain(); createImageViews(); createRenderPass(); createGraphicsPipeline(); createFramebuffers(); createCommandBuffers(); } void createInstance() { if (enableValidationLayers && !checkValidationLayerSupport()) { throw std::runtime_error("validation layers requested, but not available!"); } VkApplicationInfo appInfo = {}; appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; appInfo.pApplicationName = "Hello Triangle"; appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.pEngineName = "No Engine"; appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.apiVersion = VK_API_VERSION_1_0; VkInstanceCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; createInfo.pApplicationInfo = &appInfo; auto extensions = getRequiredExtensions(); createInfo.enabledExtensionCount = static_cast(extensions.size()); createInfo.ppEnabledExtensionNames = extensions.data(); VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo; if (enableValidationLayers) { createInfo.enabledLayerCount = static_cast(validationLayers.size()); createInfo.ppEnabledLayerNames = validationLayers.data(); populateDebugMessengerCreateInfo(debugCreateInfo); createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*)&debugCreateInfo; } else { createInfo.enabledLayerCount = 0; createInfo.pNext = nullptr; } if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) { throw std::runtime_error("failed to create instance!"); } } void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) { createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT; createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT; createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT; createInfo.pfnUserCallback = debugCallback; } void setupDebugMessenger() { if (!enableValidationLayers) return; VkDebugUtilsMessengerCreateInfoEXT createInfo; populateDebugMessengerCreateInfo(createInfo); if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) { throw std::runtime_error("failed to set up debug messenger!"); } } void createImageViews() { swapChainImageViews.resize(swapChainImages.size()); for (size_t i = 0; i < swapChainImages.size(); i++) { VkImageViewCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; createInfo.image = swapChainImages[i]; createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; createInfo.format = swapChainImageFormat; createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; createInfo.subresourceRange.baseMipLevel = 0; createInfo.subresourceRange.levelCount = 1; createInfo.subresourceRange.baseArrayLayer = 0; createInfo.subresourceRange.layerCount = 1; if (vkCreateImageView(device, &createInfo, nullptr, &swapChainImageViews[i]) != VK_SUCCESS) { throw std::runtime_error("failed to create image views!"); } } } void createSurface() { if (glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS) { throw std::runtime_error("failed to create window surface!"); } } void pickPhysicalDevice() { uint32_t deviceCount = 0; vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr); if (deviceCount == 0) { throw std::runtime_error("failed to find GPUs with Vulkan support!"); } std::vector devices(deviceCount); vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data()); for (const auto& device : devices) { if (isDeviceSuitable(device)) { physicalDevice = device; break; } } if (physicalDevice == VK_NULL_HANDLE) { throw std::runtime_error("failed to find a suitable GPU!"); } } void createLogicalDevice() { QueueFamilyIndices indices = findQueueFamilies(physicalDevice); std::vector queueCreateInfos; std::set uniqueQueueFamilies = { indices.graphicsFamily, indices.presentFamily }; float queuePriority = 1.0f; for (int queueFamily : uniqueQueueFamilies) { VkDeviceQueueCreateInfo queueCreateInfo = {}; queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo.queueFamilyIndex = queueFamily; queueCreateInfo.queueCount = 1; queueCreateInfo.pQueuePriorities = &queuePriority; queueCreateInfos.push_back(queueCreateInfo); } VkPhysicalDeviceFeatures deviceFeatures = {}; VkDeviceCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; createInfo.pQueueCreateInfos = queueCreateInfos.data(); createInfo.queueCreateInfoCount = static_cast(queueCreateInfos.size()); createInfo.pEnabledFeatures = &deviceFeatures; createInfo.enabledExtensionCount = static_cast(deviceExtensions.size()); createInfo.ppEnabledExtensionNames = deviceExtensions.data(); if (enableValidationLayers) { createInfo.enabledLayerCount = static_cast(validationLayers.size()); createInfo.ppEnabledLayerNames = validationLayers.data(); } else { createInfo.enabledLayerCount = 0; } if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) { throw std::runtime_error("failed to create logical device!"); } vkGetDeviceQueue(device, indices.graphicsFamily, 0, &graphicsQueue); vkGetDeviceQueue(device, indices.presentFamily, 0, &presentQueue); } void createSwapChain() { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice); VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats); VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes); VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities); uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1; if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) { imageCount = swapChainSupport.capabilities.maxImageCount; } VkSwapchainCreateInfoKHR createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; createInfo.surface = surface; createInfo.minImageCount = imageCount; createInfo.imageFormat = surfaceFormat.format; createInfo.imageColorSpace = surfaceFormat.colorSpace; createInfo.imageExtent = extent; createInfo.imageArrayLayers = 1; createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; QueueFamilyIndices indices = findQueueFamilies(physicalDevice); uint32_t queueFamilyIndices[] = { (uint32_t)indices.graphicsFamily, (uint32_t)indices.presentFamily }; if (indices.graphicsFamily != indices.presentFamily) { createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT; createInfo.queueFamilyIndexCount = 2; createInfo.pQueueFamilyIndices = queueFamilyIndices; } else { createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; createInfo.queueFamilyIndexCount = 0; // Optional createInfo.pQueueFamilyIndices = nullptr; // Optional } createInfo.preTransform = swapChainSupport.capabilities.currentTransform; createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; createInfo.presentMode = presentMode; createInfo.clipped = VK_TRUE; createInfo.oldSwapchain = VK_NULL_HANDLE; if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) { throw std::runtime_error("failed to create swap chain!"); } vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr); swapChainImages.resize(imageCount); vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data()); swapChainImageFormat = surfaceFormat.format; swapChainExtent = extent; } bool isDeviceSuitable(VkPhysicalDevice device) { QueueFamilyIndices indices = findQueueFamilies(device); bool extensionsSupported = checkDeviceExtensionSupport(device); bool swapChainAdequate = false; if (extensionsSupported) { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device); swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty(); } return indices.isComplete() && extensionsSupported && swapChainAdequate; } void createRenderPass() { VkAttachmentDescription colorAttachment = {}; colorAttachment.format = swapChainImageFormat; colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT; colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; VkAttachmentReference colorAttachmentRef = {}; colorAttachmentRef.attachment = 0; colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &colorAttachmentRef; VkRenderPassCreateInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.attachmentCount = 1; renderPassInfo.pAttachments = &colorAttachment; renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpass; VkSubpassDependency dependency = {}; dependency.srcSubpass = VK_SUBPASS_EXTERNAL; dependency.dstSubpass = 0; dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.srcAccessMask = 0; dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; renderPassInfo.dependencyCount = 1; renderPassInfo.pDependencies = &dependency; if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS) { throw std::runtime_error("failed to create render pass!"); } } VkShaderModule createShaderModule(const std::vector& code) { VkShaderModuleCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; createInfo.codeSize = code.size(); createInfo.pCode = reinterpret_cast(code.data()); VkShaderModule shaderModule; if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) { throw std::runtime_error("failed to create shader module!"); } return shaderModule; } static std::vector readFile(const std::string& filename) { std::ifstream file(filename, std::ios::ate | std::ios::binary); if (!file.is_open()) { throw std::runtime_error("failed to open file!"); } size_t fileSize = (size_t)file.tellg(); std::vector buffer(fileSize); file.seekg(0); file.read(buffer.data(), fileSize); file.close(); return buffer; } void createSemaphores() { imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT); renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT); inFlightFences.resize(MAX_FRAMES_IN_FLIGHT); imagesInFlight.resize(swapChainImages.size(), VK_NULL_HANDLE); VkSemaphoreCreateInfo semaphoreInfo = {}; semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; VkFenceCreateInfo fenceInfo = {}; fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphores[i]) != VK_SUCCESS || vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphores[i]) != VK_SUCCESS || vkCreateFence(device, &fenceInfo, nullptr, &inFlightFences[i]) != VK_SUCCESS) { throw std::runtime_error("failed to create synchronization objects for a frame!"); } } } void createCommandBuffers() { commandBuffers.resize(swapChainFramebuffers.size()); VkCommandBufferAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; allocInfo.commandPool = commandPool; allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; allocInfo.commandBufferCount = (uint32_t)commandBuffers.size(); if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) != VK_SUCCESS) { throw std::runtime_error("failed to allocate command buffers!"); } for (size_t i = 0; i < commandBuffers.size(); i++) { VkCommandBufferBeginInfo beginInfo = {}; beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; beginInfo.pInheritanceInfo = nullptr; // Optional vkBeginCommandBuffer(commandBuffers[i], &beginInfo); VkRenderPassBeginInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; renderPassInfo.renderPass = renderPass; renderPassInfo.framebuffer = swapChainFramebuffers[i]; renderPassInfo.renderArea.offset = { 0, 0 }; renderPassInfo.renderArea.extent = swapChainExtent; VkClearValue clearColor = { 0.1f, 0.1f, 0.3f, 0.6f }; renderPassInfo.clearValueCount = 1; renderPassInfo.pClearValues = &clearColor; vkCmdBeginRenderPass(commandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE); //渲染期间绑定缓冲区 vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline); VkBuffer vertexBuffers[] = { vertexBuffer }; VkDeviceSize offsets[] = { 0 }; //绑定顶点缓冲区 vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets); vkCmdBindIndexBuffer(commandBuffers[i], indexBuffer, 0, VK_INDEX_TYPE_UINT16); vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); vkCmdDrawIndexed(commandBuffers[i], static_cast(indices.size()), 1, 0, 0, 0); //vkCmdDraw(commandBuffers[i], static_cast(vertices.size()), 1, 0, 0); vkCmdEndRenderPass(commandBuffers[i]); if (vkEndCommandBuffer(commandBuffers[i]) != VK_SUCCESS) { throw std::runtime_error("failed to record command buffer!"); } } } void createCommandPool() { QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice); VkCommandPoolCreateInfo poolInfo = {}; poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily; poolInfo.flags = 0; // Optional if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) { throw std::runtime_error("failed to create command pool!"); } } // 创建顶点缓冲区 void createVertexBuffer() { VkBuffer stagingBuffer; VkDeviceMemory stagingBufferMemory; VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size(); createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory); //*****填充顶点缓冲区***** void* data; //将缓冲区内存映射(mapping the buffer memory)到CPU可访问的内存中完成 vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data); //将顶点数据拷贝到映射内存中 memcpy(data, vertices.data(), (size_t)bufferSize); //取消映射 vkUnmapMemory(device, stagingBufferMemory); createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBuffer, vertexBufferMemory); copyBuffer(stagingBuffer, vertexBuffer, bufferSize); vkDestroyBuffer(device, stagingBuffer, nullptr); vkFreeMemory(device, stagingBufferMemory, nullptr); } // 创建索引缓冲区 void createIndexBuffer() { VkDeviceSize bufferSize = sizeof(indices[0]) * indices.size(); VkBuffer stagingBuffer; VkDeviceMemory stagingBufferMemory; createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory); void* data; vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data); memcpy(data, indices.data(), (size_t)bufferSize); vkUnmapMemory(device, stagingBufferMemory); createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBuffer, indexBufferMemory); copyBuffer(stagingBuffer, indexBuffer, bufferSize); vkDestroyBuffer(device, stagingBuffer, nullptr); vkFreeMemory(device, stagingBufferMemory, nullptr); } void createUniformBuffer() { VkDeviceSize bufferSize = sizeof(UniformBufferObject); createBuffer(bufferSize, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, uniformBuffer, uniformBufferMemory); } void createDescriptorPool() { VkDescriptorPoolSize poolSize = {}; poolSize.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; poolSize.descriptorCount = 1; VkDescriptorPoolCreateInfo poolInfo = {}; poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; poolInfo.poolSizeCount = 1; poolInfo.pPoolSizes = &poolSize; poolInfo.maxSets = 1; if (vkCreateDescriptorPool(device, &poolInfo, nullptr, &descriptorPool) != VK_SUCCESS) { throw std::runtime_error("failed to create descriptor pool!"); } } void createDescriptorSet() { VkDescriptorSetLayout layouts[] = { descriptorSetLayout }; VkDescriptorSetAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; allocInfo.descriptorPool = descriptorPool; allocInfo.descriptorSetCount = 1; allocInfo.pSetLayouts = layouts; if (vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet) != VK_SUCCESS) { throw std::runtime_error("failed to allocate descriptor set!"); } VkDescriptorBufferInfo bufferInfo = {}; bufferInfo.buffer = uniformBuffer; bufferInfo.offset = 0; bufferInfo.range = sizeof(UniformBufferObject); VkWriteDescriptorSet descriptorWrite = {}; descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; descriptorWrite.dstSet = descriptorSet; descriptorWrite.dstBinding = 0; descriptorWrite.dstArrayElement = 0; descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; descriptorWrite.descriptorCount = 1; descriptorWrite.pBufferInfo = &bufferInfo; descriptorWrite.pImageInfo = nullptr; // Optional descriptorWrite.pTexelBufferView = nullptr; // Optional vkUpdateDescriptorSets(device, 1, &descriptorWrite, 0, nullptr); } //创建缓冲区 void createBuffer(VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties, VkBuffer& buffer, VkDeviceMemory& bufferMemory) { //创建缓冲区 VkBufferCreateInfo bufferInfo = {}; bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; bufferInfo.size = size; bufferInfo.usage = usage; bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; if (vkCreateBuffer(device, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) { throw std::runtime_error("failed to create buffer!"); } //内存需求 VkMemoryRequirements memRequirements; vkGetBufferMemoryRequirements(device, buffer, &memRequirements); //内存分配 VkMemoryAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; allocInfo.allocationSize = memRequirements.size; allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties); if (vkAllocateMemory(device, &allocInfo, nullptr, &bufferMemory) != VK_SUCCESS) { throw std::runtime_error("failed to allocate buffer memory!"); } //将内存关联到缓冲区 vkBindBufferMemory(device, buffer, bufferMemory, 0); } //用于从一个缓冲区拷贝数据到另一个缓冲区 void copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) { VkCommandBufferAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; allocInfo.commandPool = commandPool; allocInfo.commandBufferCount = 1; VkCommandBuffer commandBuffer; vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer); VkCommandBufferBeginInfo beginInfo = {}; beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; vkBeginCommandBuffer(commandBuffer, &beginInfo); VkBufferCopy copyRegion = {}; copyRegion.size = size; vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, ©Region); vkEndCommandBuffer(commandBuffer); VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &commandBuffer; vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE); vkQueueWaitIdle(graphicsQueue); vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer); } uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) { VkPhysicalDeviceMemoryProperties memProperties; vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties); for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) { if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) { return i; } } throw std::runtime_error("failed to find suitable memory type!"); } void createFramebuffers() { swapChainFramebuffers.resize(swapChainImageViews.size()); for (size_t i = 0; i < swapChainImageViews.size(); i++) { VkImageView attachments[] = { swapChainImageViews[i] }; VkFramebufferCreateInfo framebufferInfo = {}; framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; framebufferInfo.renderPass = renderPass; framebufferInfo.attachmentCount = 1; framebufferInfo.pAttachments = attachments; framebufferInfo.width = swapChainExtent.width; framebufferInfo.height = swapChainExtent.height; framebufferInfo.layers = 1; if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) { throw std::runtime_error("failed to create framebuffer!"); } } } void createDescriptorSetLayout() { VkDescriptorSetLayoutBinding uboLayoutBinding = {}; uboLayoutBinding.binding = 0; uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; uboLayoutBinding.descriptorCount = 1; uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT; uboLayoutBinding.pImmutableSamplers = nullptr; // Optional VkDescriptorSetLayoutCreateInfo layoutInfo = {}; layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; layoutInfo.bindingCount = 1; layoutInfo.pBindings = &uboLayoutBinding; if (vkCreateDescriptorSetLayout(device, &layoutInfo, nullptr, &descriptorSetLayout) != VK_SUCCESS) { throw std::runtime_error("failed to create descriptor set layout!"); } } void createGraphicsPipeline() { auto vertShaderCode = readFile("shader.vert.spv"); auto fragShaderCode = readFile("shader.frag.spv"); VkShaderModule vertShaderModule = createShaderModule(vertShaderCode); VkShaderModule fragShaderModule = createShaderModule(fragShaderCode); VkPipelineShaderStageCreateInfo vertShaderStageInfo = {}; vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT; vertShaderStageInfo.module = vertShaderModule; vertShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo fragShaderStageInfo = {}; fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT; fragShaderStageInfo.module = fragShaderModule; fragShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo, fragShaderStageInfo }; VkPipelineVertexInputStateCreateInfo vertexInputInfo = {}; vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; //配置图形管线可以接受重新定义的顶点数据的格式 auto bindingDescription = Vertex::getBindingDescription(); auto attributeDescriptions = Vertex::getAttributeDescriptions(); vertexInputInfo.vertexBindingDescriptionCount = 1; vertexInputInfo.vertexAttributeDescriptionCount = static_cast(attributeDescriptions.size()); vertexInputInfo.pVertexBindingDescriptions = &bindingDescription; vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data(); VkPipelineInputAssemblyStateCreateInfo inputAssembly = {}; inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; inputAssembly.primitiveRestartEnable = VK_FALSE; VkViewport viewport = {}; viewport.x = 0.0f; viewport.y = 0.0f; viewport.width = (float)swapChainExtent.width; viewport.height = (float)swapChainExtent.height; viewport.minDepth = 0.0f; viewport.maxDepth = 1.0f; VkRect2D scissor = {}; scissor.offset = { 0, 0 }; scissor.extent = swapChainExtent; VkPipelineViewportStateCreateInfo viewportState = {}; viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewportState.viewportCount = 1; viewportState.pViewports = &viewport; viewportState.scissorCount = 1; viewportState.pScissors = &scissor; VkPipelineRasterizationStateCreateInfo rasterizer = {}; rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rasterizer.depthClampEnable = VK_FALSE; rasterizer.rasterizerDiscardEnable = VK_FALSE; rasterizer.polygonMode = VK_POLYGON_MODE_FILL; rasterizer.lineWidth = 1.0f; rasterizer.cullMode = VK_CULL_MODE_BACK_BIT; rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; rasterizer.depthBiasEnable = VK_FALSE; VkPipelineMultisampleStateCreateInfo multisampling = {}; multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisampling.sampleShadingEnable = VK_FALSE; multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; multisampling.minSampleShading = 1.0f; // Optional multisampling.pSampleMask = nullptr; // Optional multisampling.alphaToCoverageEnable = VK_FALSE; // Optional multisampling.alphaToOneEnable = VK_FALSE; // Optional VkPipelineColorBlendAttachmentState colorBlendAttachment = {}; colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; colorBlendAttachment.blendEnable = VK_FALSE; colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; // Optional colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; // Optional VkPipelineColorBlendStateCreateInfo colorBlending = {}; colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; colorBlending.logicOpEnable = VK_FALSE; colorBlending.logicOp = VK_LOGIC_OP_COPY; colorBlending.attachmentCount = 1; colorBlending.pAttachments = &colorBlendAttachment; colorBlending.blendConstants[0] = 0.0f; colorBlending.blendConstants[1] = 0.0f; colorBlending.blendConstants[2] = 0.0f; colorBlending.blendConstants[3] = 0.0f; VkPipelineLayoutCreateInfo pipelineLayoutInfo = {}; pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pipelineLayoutInfo.setLayoutCount = 1; // Optional pipelineLayoutInfo.pSetLayouts = &descriptorSetLayout; // Optional pipelineLayoutInfo.pushConstantRangeCount = 0; // Optional pipelineLayoutInfo.pPushConstantRanges = 0; // Optional if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) { throw std::runtime_error("failed to create pipeline layout!"); } VkGraphicsPipelineCreateInfo pipelineInfo = {}; pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipelineInfo.stageCount = 2; pipelineInfo.pStages = shaderStages; pipelineInfo.pVertexInputState = &vertexInputInfo; pipelineInfo.pInputAssemblyState = &inputAssembly; pipelineInfo.pViewportState = &viewportState; pipelineInfo.pRasterizationState = &rasterizer; pipelineInfo.pMultisampleState = &multisampling; pipelineInfo.pDepthStencilState = nullptr; // Optional pipelineInfo.pColorBlendState = &colorBlending; pipelineInfo.pDynamicState = nullptr; // Optional pipelineInfo.layout = pipelineLayout; pipelineInfo.renderPass = renderPass; pipelineInfo.subpass = 0; pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional pipelineInfo.basePipelineIndex = -1; // Optional if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) { throw std::runtime_error("failed to create graphics pipeline!"); } vkDestroyShaderModule(device, fragShaderModule, nullptr); vkDestroyShaderModule(device, vertShaderModule, nullptr); } bool checkDeviceExtensionSupport(VkPhysicalDevice device) { uint32_t extensionCount; vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr); std::vector availableExtensions(extensionCount); vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data()); std::set requiredExtensions(deviceExtensions.begin(), deviceExtensions.end()); for (const auto& extension : availableExtensions) { requiredExtensions.erase(extension.extensionName); } return requiredExtensions.empty(); } VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) { if (capabilities.currentExtent.width != std::numeric_limits::max()) { return capabilities.currentExtent; } else { int width, height; glfwGetFramebufferSize(window, &width, &height); VkExtent2D actualExtent = { static_cast(width), static_cast(height) }; //VkExtent2D actualExtent = { WIDTH, HEIGHT }; actualExtent.width = std::max(capabilities.minImageExtent.width, std::min(capabilities.maxImageExtent.width, actualExtent.width)); actualExtent.height = std::max(capabilities.minImageExtent.height, std::min(capabilities.maxImageExtent.height, actualExtent.height)); return actualExtent; } } SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) { SwapChainSupportDetails details; vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities); uint32_t formatCount; vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr); if (formatCount != 0) { details.formats.resize(formatCount); vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data()); } uint32_t presentModeCount; vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr); if (presentModeCount != 0) { details.presentModes.resize(presentModeCount); vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data()); } return details; } VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector& availableFormats) { if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) { return { VK_FORMAT_B8G8R8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR }; } for (const auto& availableFormat : availableFormats) { if (availableFormat.format == VK_FORMAT_B8G8R8A8_UNORM && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) { return availableFormat; } } return availableFormats[0]; } VkPresentModeKHR chooseSwapPresentMode(const std::vector availablePresentModes) { VkPresentModeKHR bestMode = VK_PRESENT_MODE_FIFO_KHR; for (const auto& availablePresentMode : availablePresentModes) { if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) { return availablePresentMode; } else if (availablePresentMode == VK_PRESENT_MODE_IMMEDIATE_KHR) { bestMode = availablePresentMode; } } return bestMode; } QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) { QueueFamilyIndices indices; uint32_t queueFamilyCount = 0; vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr); std::vector queueFamilies(queueFamilyCount); vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data()); int i = 0; for (const auto& queueFamily : queueFamilies) { if (queueFamily.queueCount > 0 && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) { indices.graphicsFamily = i; } VkBool32 presentSupport = false; vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport); if (presentSupport) { indices.presentFamily = i; } if (indices.isComplete()) { break; } i++; } return indices; } std::vector getRequiredExtensions() { uint32_t glfwExtensionCount = 0; const char** glfwExtensions; glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount); std::vector extensions(glfwExtensions, glfwExtensions + glfwExtensionCount); if (enableValidationLayers) { extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME); } return extensions; } bool checkValidationLayerSupport() { uint32_t layerCount; vkEnumerateInstanceLayerProperties(&layerCount, nullptr); std::vector availableLayers(layerCount); vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data()); for (const char* layerName : validationLayers) { bool layerFound = false; for (const auto& layerProperties : availableLayers) { if (strcmp(layerName, layerProperties.layerName) == 0) { layerFound = true; break; } } if (!layerFound) { return false; } } return true; } static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) { std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl; return VK_FALSE; } }; int main() { HelloTriangleApplication app; try { app.run(); } catch (const std::exception& e) { std::cerr << e.what() << std::endl; return EXIT_FAILURE; } return EXIT_SUCCESS; }