warning: Creating default object from empty value in /mydata/wwwroot/xilinx.eetrend.com/modules/taxonomy/taxonomy.pages.inc on line 33.

机器视觉

机器视觉之 ICP算法和RANSAC算法

临时研究了下机器视觉两个基本算法的算法原理 ,可能有理解错误的地方,希望发现了告诉我一下

主要是了解思想,就不写具体的计算公式之类的了

(一) ICP算法(Iterative Closest Point迭代最近点)

ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法,如下图1

如下图,假设PR(红色块)和RB(蓝色块)是两个点集,该算法就是计算怎么把PB平移旋转,使PB和PR尽量重叠,建立模型的

(图1)

ICP是改进自对应点集配准算法的

机器视觉引发的智能制造领域变革

随着柔性制造系统的推广和传感、模式识别等技术的发展,针对工业需求的视觉和图像技术逐步成熟,制造业信息获取能力加强。视觉和图像技术搭载在摄像头、传感器、雷达等智能硬件内,能够实现图像信息的获取和分析。

面向工业的视觉和图像分析技术逐步成熟,制造业信息获取能力不断增强

随着柔性制造系统的推广和传感、模式识别等技术的发展,针对工业需求的视觉和图像技术逐步成熟,制造业信息获取能力加强。视觉和图像技术搭载在摄像头、传感器、雷达等智能硬件内,能够实现图像信息的获取和分析。信息从传统的单一维度数据拓展为包含速度、尺寸、色谱等信息的多维度立体海量数据,并同设计信息和加工控制信息集成,为后续工况监测、质量检验等生产环节提供数据支撑。制造业信息获取渠道得到拓展,信息获取效率大幅提升。华睿科技发布多系列面阵相机、高分辨率定焦镜头产品以及读码、结构光3D相机等最新产品,通过isp算法保证图像质量,可广泛应用于工业生产领域。

机器视觉结合信息网络技术催生新服务内容,生产监控智能化水平得到提升

一文了解摄像头、雷达、激光雷达及V2X的作用及局限性

目前,全球车企和诸多初创公司利用各类技术提升车辆的“视觉”能力及对驾驶环境的应对。然而,各类技术也存在诸多限制及可靠性要求,详见下文。

据外媒报道,目前,全球车企和诸多初创公司利用各类技术提升车辆的“视觉”能力及对驾驶环境的应对。然而,各类技术也存在诸多限制及可靠性要求,如下:

摄像头:摄像头采用光波来探查环境,务必获得先进机器学习的支持,实现图像识别。摄像头在识别图形方面的效率最高,但其探查精度及对环境的应变能力会受到强光、暴雨、漆黑夜间的影响。

雷达:其技术与飞机用导航类似,该类系统利用电磁波(electromagnetic waves)提供最精准的目标物间距。车载雷达的数量越多,图像的精度就越高,但这会提升其雷达相互干扰的几率。不同的电磁波频率可被用于研发不同的外部世界感知能力,提供远距离视图及近距离详图。

机器视觉设计五个要素

机器视觉在中国的发展已有十余个年头。过去十年是机器视觉产业在中国市场发展最快的十年,经过一定时期的普及与推广,机器视觉已逐渐为广大客户所熟知,而且应用范围,也逐渐开始扩大,大规模的应用领域由起初的电子、制药等行业,逐步扩展到包装、印刷等各大领域。

机器视觉市场在发展,机器视觉技术在进步,在以不断满足客户发展需求的同时,最基本需求的满足也是不容忽视的。一直以来,我国的科技水平都处于不断发展的阶段,机器视觉技术作为科技发展的产物,为了更好的适应行业需求,也在不断的优化升级。纵观行业发展,国内机器视觉市场机遇与挑战并存,而行业技术的升级更显得尤为必要了。

在工业生产领域,工业机器人检测产品很大程度上依靠机器视觉,视觉的灵敏度将直接影响产品的检测速度和检测质量,因此设计一款质量过硬的视觉产品尤为重要,在设计过程中,设计人员会面临视觉定位、测量、检测和识别等诸多难题。

一、打光的稳定性

机器视觉中工业相机常用参数

工业相机是机器视觉系统中的一个关键组件,其最基础功能就是将光信号转变成为有序的电信号。选择合适的工业相机也是机器视觉系统设计中的重要环节,工业相机不仅是直接决定所采集到的图像分辨率、图像质量等,同时也与整个系统的运行模式直接相关。

工业相机主要参数

1. 分辨率(Resolution):相机每次采集图像的像素点数(Pixels),对于工业数字相机一般是直接与光电传感器的像元数对应的,对于工业数字模拟相机则是取决于视频制式,PAL制为768*576,NTSC制为640*480。

2. 像素深度(Pixel Depth):即每像素数据的位数,一般常用的是8Bit,对于工业数字数字相机一般还会有10Bit、12Bit等。

3. 最大帧率(Frame Rate)/行频(Line Rate):相机采集传输图像的速率,对于面阵相机一般为每秒采集的帧数(Frames/Sec.),对于线阵相机机为每秒采集的行数(Hz)。

机器人视觉的九大挑战

机器人视觉解决方案是我们实现机器人视野的几大挑战。即便变得越来越简单易用,还是有一些棘手的问题。很多因素影响机器人在环境中的视觉,任务设置和工作场所。这里有9个总结出来的机器人视觉挑战:

1. 照明

如果有过在低光照下拍摄数码照片的经验,就会知道照明至关重要。糟糕的照明会毁掉一切。成像传感器不像人眼那样适应性强或敏感。如果照明类型错误,视觉传感器将无法可靠地检测到物体。

有各种克服照明挑战的方法。一种方法是将有源照明结合到视觉传感器本身中。其他解决方案包括使用红外照明,环境中的固定照明或使用其他形式的光的技术,例如激光。

2. 变形或铰接

球是用计算机视觉设置来检测的简单对象。你可能只是检测它的圆形轮廓,也许使用模板匹配算法。但是,如果球被压扁,它会改变形状,同样的方法将不再起作用。这是变形。它会导致一些机器人视觉技术相当大的问题。

铰接类似,是指由可移动关节引起的变形。例如,当您在肘部弯曲手臂时,手臂的形状会发生变化。各个链接(骨骼)保持相同的形状,但轮廓变形。由于许多视觉算法使用形状轮廓,因此清晰度使得物体识别更加困难。

机器人视觉系统包括哪些关键技术?

机器人视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。人类接收的信息70%以上来自视觉,人类视觉为人类提供了关于周围环境最详细可靠的信息。

人类视觉所具有的强大功能和完美的信息处理方式引起了智能研究者的极大兴趣,人们希望以生物视觉为蓝本研究一个人工视觉系统用于机器人中,期望机器人拥有类似人类感受环境的能力。机器人要对外部世界的信息进行感知,就要依靠各种传感器。就像人类一样,在机器人的众多感知传感器中,视觉系统提供了大部分机器人所需的外部世界信息。因此视觉系统在机器人技术中具有重要的作用。

依据视觉传感器的数量和特性,目前主流的移动机器人视觉系统有单目视觉、双目立体视觉、多目视觉和全景视觉等。

单目视觉

单目视觉系统只使用一个视觉传感器。单目视觉系统在成像过程中由于从三维客观世界投影到N维图像上,从而损失了深度信息,这是此类视觉系统的主要缺点( 尽管如此,单目视觉系统由于结构简单、算法成熟且计算量较小,在自主移动机器人中已得到广泛应用,如用于目标跟踪、基于单目特征的室内定位导航等。同时,单目视觉是其他类型视觉系统的基础,如双目立体视觉、多目视觉等都是在单目视觉系统的基础上,通过附加其他手段和措施而实现的。

双目立体视觉

机器视觉行业发展现状分析 技术应用领域非常广泛

什么是机器视觉?

机器视觉是一项综合技术,包括图像处理、机械工程技术、控制、电光源照明、光学成像、传感器、模拟与数字视频技术、计算机软硬件技术(图像增强和分析算法、图像卡、I/O卡等)。一个典型的机器视觉应用系统包括图像捕捉、光源系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块。

机器视觉是实现工业自动化和智能化的必要手段,相当于人类视觉在机器上的延伸。机器视觉具有高度自动化、高效率、高精度和适应较差环境等优点,将在我国工业自动化的实现过程中产生重要作用。

机器视觉系统的应用领域和应用范围非常广泛,工业领域是机器视觉应用比重大的领域,主要用于产品质量检测、分类、机器人定位装等,一方面替代人工视觉,另一方面用于提高生产的柔性和自动化程度。随着我国工业的产业升级,产品质量要求的提高及人力成本的增加,机器视觉系统的应用将越来越广泛。

机器视觉产业具体应用统计情况

机器视觉系统之光源选择

在机器视觉系统中,获得一张高质量的可处理的图像是至关重要。系统之所以成功,首先要保证图像质量好,特征明显,。一个机器视觉项目之所以失败,大部分情况是由于图像质量不好,特征不明显引起的。要保证好的图像,必须要选择一个合适的光源。

光源选型基本要素

对比度:对比度对机器视觉来说非常重要。机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特征的区分。对比度定义为在特征与其周围的区域之间有足够的灰度量区别。好的照明应该能够保证需要检测的特征突出于其他背景。

亮度:当选择两种光源的时候,最佳的选择是选择更亮的那个。当光源不够亮时,可能有三种不好的情况会出现。第一,相机的信噪比不够;由于光源的亮度不够,图像的对比度必然不够,在图像上出现噪声的可能性也随即增大。其次,光源的亮度不够,必然要加大光圈,从而减小了景深。另外,当光源的亮度不够的时候,自然光等随机光对系统的影响会最大。

机器视觉中不同类型光源的不同打光方式的效果探究

有经验的机器视觉工程师都会认可这样一句话:机器视觉项目的成败在于能否得到一张打光优秀的图片。如果采集到的图片本身“质量”很差,那么接来下的图像处理工作就会困难重重。

由于项目的需求以及光源厂商的努力,目前机器视觉光源的类型可以说十分丰富,例如条光、背光、平行背光、同轴光、点光、隧道光、碗光、环形光、球形光、条形聚光等。根据光的波长和颜色,又可以分为X光、蓝光、红光、白光、红外光等。

网上关于光源选型方面的资料多如牛毛,我不想再重复,我想说点其他的。

在光源大家族中,有一种光最为灵活多变,它就是环形光。环形光有低角度环形光、高角度环形光等不同类型,例如0°环形光、30°环形光、45°环形光、60°环形光、90°环形光等。

不同的资料对于这个环光的“角度”定义不同,有的指“光源照射方向与水平面的夹角”,有的指“光源照射方向与镜头光轴(一般是竖直方向)的夹角”。本文采用后一种定义方式来描述。

为什么说环形光的花样多呢?因为它的口径可以不同、它的“角度”可以不同、它的光的颜色可以不同、它的安装高度也可以不同(其他光源安装高度不同差异一般不会有这么大)。

下面我以拍摄镜头模组为例,采用不同“角度”的环形光,沿着镜头光轴方向在不同高度分别采集图像,大家可以观察图像的特点与变化。

同步内容
--电子创新网--
粤ICP备12070055号