自动驾驶

详述人工智能在自动驾驶技术中的应用

随着技术的快速发展云计算、大数据、人工智能一些新名词进入大众的视野,人工智能是人类进入信息时代后的又一技术革命正受到越来越广泛的重视。作为人工智能技术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。

自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。自动驾驶技术将成为未来汽车一个全新的发展方向。本文将主要介绍人工智能技术在自动驾驶中的应用领域,并对自动技术的发展前景进行一个简单的分析。

人工智能是一门起步晚却发展快速的科学。20 世纪以来科学工作者们不断寻求着赋予机器人类智慧的方法。现代人工智能这一概念是从英国科学家图灵的寻求智能机发展而来,直到1937年图灵发表的论文《理想自动机》给人工智能下了严格的数学定义,现实世界中实际要处理的很多问题不能单纯地是数值计算,如言语理解与表达、图形图像及声音理解、医疗诊断等等。

自动驾驶中常用的四类机器学习算法

机器学习算法已经被广泛应用于自动驾驶各种解决方案,电控单元中的传感器数据处理大大提高了机器学习的利用率,也有一些潜在的应用,比如利用不同外部和内部的传感器的数据融合(如激光雷达、雷达、摄像头或物联网),评估驾驶员状况或为驾驶场景分类等。在KDnuggets网站发表的一篇文章中,作者Savaram Ravindra将自动驾驶中机器学习算法主要分为四类,即决策矩阵算法、聚类算法、模式识别算法和回归算法。我们跟他一起看看,这些算法都是怎样应用的。

算法概览

我们先设想这样一个自动驾驶场景——汽车的信息娱乐系统接收传感器数据融合系统的信息,如果系统发现司机身体有恙,会指导无人车开往附近的医院。

这项应用以机器学习为基础,能识别司机的语音、行为,进行语言翻译等。所有这些算法可以分为两类:监督学习和无监督学习,二者的区别在它们学习的方法。

监督学习算法利用训练数据集学习,并会坚持学到达到所要求的置信度(误差的最小概率)。监督学习算法可分为回归、分类和异常检测或维度缩减问题。

无监督学习算法会在可用数据中获取价值。这意味着算法能找到数据的内部联系、找到模式,或者根据数据间的相似程度将数据集划分出子集。无监督算法可以被粗略分类为关联规则学习和聚类。

“四问”自动驾驶:到底该如何理想面对它?

随着自动驾驶汽车的兴起,使得不少传统车企似乎看到了新的商机,于是纷纷向该领域进行投资。然而提起“自动驾驶”,相信不少用户会感到陌生,但对于自动驾驶领域来说,从目前来看,它正以“飞速”的速度进行发展。小编坚信,未来,自动驾驶汽车将成为我们生活中最常见的交通方式,所以大家多少都需要知道一些关于自动驾驶的常识,也许当你想要购买该领域新车时,能够有一些自己的见解,正所谓“知己知彼百战百胜”嘛,下面小编为大家科普几个日常生活的需要的知识点,或许你看完会对自动驾驶有一个新的认识。

科普知识点一:记住这些知识点,关键时刻能保命

有研究表明,关于自动驾驶来说,人们仍要需要懂得一些常识才能上路,有人说,90%的驾驶任务不需要常识,需要使用常识的情况只有微不足道的10%。然而,如果你上路行驶的自动驾驶汽车错过了那10%的常识,遇到突发情况后,才会追悔莫及。

自动驾驶技术发展的5个阶段和现状

业界第一款具备真正意义上的自动驾驶能力的量产车——全新奥迪A8 2017年7月才姗姗来迟。作为整个自动驾驶的第一个量产玩家,奥迪尽管已经走在了行业最前沿,但目前实现的还是3级的自动驾驶,也就是说这是一种在限定环境条件下,需要驾驶员始终有接管能力的自动驾驶,距离无限条件无需接管的自动驾驶还有相当长的路要走。

回头看历史,猛然发觉第一届DARPA自动驾驶挑战赛已经是十年前的事了。对比互联网产业,十年前支付宝还没有手机支付业务,而微信根本还没诞生,再看现在,支付宝和微信已经全面占领了我们的生活。为什么汽车工业的动作慢如蜗牛?自动驾驶到底难在哪里?

事实上,早在车企开始宣传“世界上第一款量产L3级别汽车”的时候,我们就应该揭穿他们的把戏。

自动驾驶的级别从L1到L5(SAE),清晰而直观,是大家讨论自动驾驶行业的一个基准。但是,它也很容易误导人。让人以为自动驾驶的技术会一级一级获得突破,最终迎来一辆L5级别的汽车,可以带我们到任何地方去。

醒醒吧,真实的技术部署从来不会按这样的“计划方案”发展。而且,这个行业里的公司“怎么说的”和“怎么做的”完全不是一回事。你能听到很多人,在画一张同样的大饼:我们在研发自动驾驶,我们将率先发布某个级别的汽车,我们将推出最先进的自动驾驶汽车叫车服务。

关于高精度地图定义的探讨

高精度地图是自动驾驶/无人驾驶的重要组成,那究竟什么是高精度地图?

网上找了两个关于高精度地图的定义,如下:

定义一:高精细地图是指高精度、精细化定义的地图,其精度需要达到分米级才能够区分各个车道,如今随着定位技术的发展,高精度的定位已经成为可能。而精细化定义,则是需要格式化存储交通场景中的各种交通要素,包括传统地图的道路网数据、车道网络数据、车道线以和交通标志等数据。

定义二:高精度电子地图也称为高分辨率地图(HD Map,High Definition Map),是一种专门为无人驾驶服务的地图。与传统导航地图不同的是,高精度地图除了能提供的道路(Road)级别的导航信息外,还能够提供车道(Lane)级别的导航信息。无论是在信息的丰富度还是信息的精度方面,都是远远高于传统导航地图的。

从上面的定义可以了解到,高精度地图提供了更高精度、更精细化的内容,包括了车道信息和交通标志信息等。那么更高精度+更详细内容=高精度地图?

关于高精度地图定义的探讨

自动驾驶汽车环境感知需要哪些传感器?

自动驾驶汽车是依靠人工智能、视觉计算、激光雷达、监控装置和全球定位系统协同合作,让电脑可以在没有人类主动的操作下,自动、安全地操作机动车辆,其主要由环境感知系统、定位导航系统、路径规划系统、速度控制系统、运动控制系统、中央处理单元、数据传输总线等组成。

自动驾驶汽车在传统汽车的基础上扩展了视觉感知功能、实时相对地图功能、高速规划与控制功能,增加了全球定位系统天线、工业级计算机、GPS 接收机、雷达等核心软硬件。感知环节通过各种传感器采集周围环境基本信息,是自动驾驶的基础,主要包括毫米波雷达、激光雷达、超声波传感器、图像传感器等。

 自动驾驶汽车环境感知需要哪些传感器?
4种传感器感知范围示意图

4种传感器及其产业链介绍

1、毫米波雷达

盘点:推动自动驾驶汽车发展的四项技术趋势

虽然跟得太紧或是刹车太晚等驾驶行为很容易处理,但是预测其他驾驶员行为以及处理复杂的交叉路口情况只能依赖有经验的驾驶员。自动驾驶汽车(AV)就像新手驾驶员,只是其拥有发展得更好的大脑以及价值数十亿美元的技术,可帮助缩短学习时间。但是即使使用其所有的传感器和软件,自动驾驶汽车在可以完全自信且有能力驾驶之前,仍有需要克服的缺陷。

在自动驾驶车辆竞争中,有几项不太引人注目的技术趋势正在突起,以帮助真正的自动驾驶车辆成为现实。

教会自动驾驶车辆有关道路规则技术

人类驾驶员必须学习驾驶员手册,了解停车标志和让路标志的区别,同样地,自动驾驶车辆也需要通过人工智能(AI)学习道路规则。此外,自动驾驶车辆还需要通过在路上花费数小时来获取有关真实世界的体验。

自动驾驶技术之——无人驾驶中的CAN总线

CAN总线在整个无人驾驶系统中有着十分重要的作用。除了在VCU信号需要通过CAN总线进行传输外,无人车上的某些传感器(如雷达、Mobileye)的信号传递也是通过CAN实现的。

前言

本文主要内容是——无人驾驶中的CAN(Controller Area Network )总线。

CAN总线在整个无人驾驶系统中有着十分重要的作用。除了在VCU信号需要通过CAN总线进行传输外,无人车上的某些传感器(如雷达、Mobileye)的信号传递也是通过CAN实现的。

我在无人驾驶,个人如何研究?中提到过

实现一个无人驾驶系统,会有几个层级: 感知层 → 融合层 → 规划层 → 控制层 更具体一点为: 传感器层 → 驱动层 → 信息融合层 → 决策规划层 → 底层控制层

“传感器层”在之前的分享中已经介绍过了,这次主要介绍的是“驱动层”相关的内容。

正文

自动驾驶时代即将来临 它将如何重塑城市形态?

一座城市的精华并不存在于纪念碑或博物馆中,街道上活生生的人和景才是它的真谛。过去一个世纪以来,汽车成了城市街道的霸主,街道和环境都在看它们的脸色变化。

为了提升交通效率,街道变得笔直宽阔,而在十字路口,保护行人则成了第一要务。商业区的布局也有了变化,它们大多建在空地附近,而空地则用来停车。

随着自动驾驶革命的深入,未来城市规划者肯定要刷新现有思维,重塑城市格局,更改现有过时的设计,搭建一个对行人更为友好的欢乐城市。

“主动脉”

虽然城市里的主干道还会继续存在(方便自动驾驶车辆快速输送乘客),但满城的双向八车道恐怕会逐渐减少。鉴于自动驾驶技术永远也无法达到完美状态,因此为自动驾驶汽车提供快速通道能减少事故发生的几率。

城市绿地

绿地对城市相当重要,即使只是一棵树或一个小公园,都能切实提升居民的心理健康。鉴于自动驾驶时代私人车辆会大幅减少,因此停车场会为绿地让出大量空间。有了空间,想把城市打造成大花园就简单多了。

“鸟巢”休息站

虽然自动驾驶时代路边停车位和社区车库都可以大幅削减,但停车这个刚需不可能完全消失。而且如果在非高峰期还要运营巨大的自动驾驶车队,出租车公司在成本上也吃不消。

“无人驾驶”的技术路线

作者:郭喨 唐兴华
来源:中国社会科学网-中国社会科学报

无人驾驶车辆真要跑起来,需要解决感知、决策和执行等层面的技术问题。感知系统也称为“中层控制系统”,负责感知周围的环境,并进行识别和分析;决策系统也称为“上层控制系统”,负责路径规划和导航;执行系统又称为“底层控制系统”,负责汽车的加速、刹车和转向。本文以“感知—决策—执行”的顺序呈现,是因为这样更加符合人类的驾驶模式。如,先看看前面——绿灯、周围无行人——收集信息;然后做出决策——可以通行;最后执行决策——开过十字路口。

自动驾驶的感知系统

感知系统的输入设备具体包括光学摄像头、光学雷达(LiDAR)、微波雷达、导航系统等。这些传感器收集周围的信息,为感知系统提供全面的环境数据。

光学摄像头是目前最便宜也是最常用的车载传感器,它的一大优点就是可以分辨颜色,因此也成为场景解读的绝佳工具。但其缺点也很明显:
1.缺乏“深度”这一维度,没有立体视觉就无法判断物体和相机(可以换算为车辆)间的距离;
2.对光线过于敏感,过暗或过强的光线以及二者之间的快速切变,比如驶入和驶出隧道都足以影响它的成像。

同步内容
--电子创新网--
粤ICP备12070055号