语音识别

一文了解LSTM和GRU背后的秘密

你好,欢迎阅读长短期记忆网络(LSTM)和门控循环单元(GRU)的图解文章。我是Michael,是AI语音助理领域的机器学习工程师。

在这篇文章中,我们将从LSTM和GRU背后的原理出发。然后我将解释允许LSTM和GRU表现良好的内部机制。如果你想了解这两个网络的背后到底是什么,那么这篇文章就是为你准备的。

一文了解LSTM和GRU背后的秘密

问题根源短期记忆

递归神经网络(RNN)具有短期记忆。如果序列足够长,他们将很难将信息从较早的时间步骤传送到后面的步骤。因此,如果你正在尝试对一段文本进行预测,RNN可能会从一开始就遗漏掉重要信息。

在反向传播期间,递归神经网络(RNN)会遇到梯度消失问题。梯度是用于更新神经网络权重的值。梯度消失问题是当梯度随着时间的推移传播时梯度下降。如果梯度值变得非常小,则不会继续学习。

语音识别算法的现状

目前的语音识别算法:卷积神经网络、深度学习神经网络、BP神经网络、RBF神经网络、模糊聚类神经网络、改进的T-S模糊神经网络、循环神经网络、小波神经网络、混沌神经网络、小波混沌神经网络、神经网络和遗传算法、动态优化神经网络、K均值和神经网络集成、HMM与自组织神经网络的结合、正交基函数对向传播过程神经网络、HMM和新型前馈型神经网络、特征空间随机映射、SVM多类分类算法、特征参数归一化、多频带谱减法、独立感知理论、分段模糊聚类算法VQ-HMM、优化的竞争算法、双高斯GMM特征参数、MFCC和GMM、MFCCs和PNN、SBC和SMM、MEL倒谱系数和矢量量化、DTW、LPCC和MFCC、隐马尔科夫模型HMM。

由于BP算法在神经网络的层数增多时容易陷入局部最优的困境,也很容易产生过拟合的问题。20世纪90年代,各种各样的浅层机器学习模型相继被提出,如支撑向量机(Support Vector Machines, SVM)、Boosting、最大熵方法(如 Logistic Regression, LR)等。这些模型具有高效的学习算法,且不存在局部最优的问题,在理论分析与实际应用中都获得了巨大的成功。相比之下,MLP的训练需要很多经验和技巧,多层前馈神经网络的研究逐渐变得冷清。

远场语音识别面临的瓶颈与挑战

语音交互正在被视为用户在未来很多场景下的主要流量入口之一。因此,寻求可靠有效的远场语音技术突破变成了当下工业界和学术界的迫切需求。一个经典的语音识别系统包含麦克风信号采集模块、信号处理模块以及语音识别模块。每个模块的处理方法都会影响最终的识别效果。

具体来说,目前远场语音识别的技术难点主要集中在以下4个部分:
第一个是多通道同步采集硬件研发;
第二个是前端麦克风阵列信号处理算法研发;
第三个是后端语音识别与前端信号处理的匹配;
第四个是前端和后端联合优化。

首先,多通道麦克风阵列技术已经被证明可以显著提升语音识别质量。当信号采集通道数足够多时,需要额外研发多通道同步技术。并且,目前消费电子上很少有集成多个麦克风的情况,相关研究成果很少,这也增加了该硬件方案的研发难度。

远场语音识别面临的瓶颈与挑战

详解卷积神经网络(CNN)在语音识别中的应用

作者:侯艺馨

前言

总结目前语音识别的发展现状,dnn、rnn/lstm和cnn算是语音识别中几个比较主流的方向。2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep Neural Network)引入到声学模型建模中,将FFDNN的输出层概率用于替换之前GMM-HMM中使用GMM计算的输出概率,引领了DNN-HMM混合系统的风潮。长短时记忆网络(LSTM,LongShort Term Memory)可以说是目前语音识别应用最广泛的一种结构,这种网络能够对语音的长时相关性进行建模,从而提高识别正确率。双向LSTM网络可以获得更好的性能,但同时也存在训练复杂度高、解码时延高的问题,尤其在工业界的实时识别系统中很难应用。

除了看和听之外,AI能拥有触觉吗?

AI近几年的快速发展离不开深度学习方法的深入研究,而深度学习提升AI能力的最显著表现,目前来看主要集中在两个方面:图像识别和语音识别。

通过对图像的语义分割,图像识别技术已经应用得特别广泛。在手机摄影、拍照购物、刷脸支付等各种领域,图像识别给我们带来了极大的便利。同时,基于语音识别的各种语音助手比如智能音箱等,也在悄然描画智能家居的未来。可以说,单单是在视觉和听觉这两个方面的技术突破,AI就已经给世界带来了巨大改变。

但是,人有五感,除了视觉和听觉之外,还有非常重要的触觉。曾经有个人做实验,看看蒙上眼睛堵上耳朵再绑手脚这人会怎样,结果差点儿整出精神病。

那么具体到AI这件事上,仅仅发展其视觉和听觉技术已经逐步呈现了“瘸腿走路”的特征。如今,或许是时候讨论一下给它加上触觉这件事了。

视觉和听觉长板下的触觉短板

视觉和听觉技术发展的优点是显而易见的,其最重要的作用也集中在两个字上:识别。

为什么视觉的识别和听觉的识别技术这么重要,而且被首先开发出来呢?笔者认为主要有以下几个方面的原因。

第一,视觉和听觉是判断某一个物体特性的基本方法。

语音识别现在发展到什么阶段了?

人工智能快速发展的今天,语音识别开始成为很多设备的标配,语音识别开始被越来越多的人关注,国外微软、谷歌、Facebook,国内的科大讯飞、思必驰等厂商都在研发语音识别新策略新算法,今天小编就将为你做语音识别技术的简单介绍,并谈谈它的发展历程和未来可能的发展方向。

在电影《钢铁侠》中,智能助理贾维斯的出色表现让大家充满了对智能语音助手的期待。语音识别技术就是为了让机器人听明白你在说什么,它就好比“机器的听觉系统”,该技术让机器通过识别和理解,把语音信号转变为相应的文本或命令。

语音识别现在发展到什么阶段了?

语音识别系统本质上是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单元,它的基本结构如下图所示:
语音识别现在发展到什么阶段了?

语音识别之初体验

一、概述

作为最自然的人机交互方式 ——语音,正在改变人们的生活,丰富多媒体技术的应用。语音识别技术是语音信号处理的一个重要分支,也是近年来很火的一个研究领域。随着科技的飞速发展,语音识别不仅在桌面PC和大型工作站得到了广泛应用,而且在嵌入式系统领域也占有一席之地,如智能家居、语音助手、车载语音识别系统等。相信在不久的将来,语音识别技术必定会渗透在人们生活的每个角落。

二、语音识别系统的分类

语音识别按照说话人的说话方式可以分为孤立词(IsolatedWord)识别、连接词(Connected Word)识别和连续语音(Continuous Speech)识别。孤立词识别是指说话人每次只说一个词或短语,每个词或短语在词汇表中都算作一个词条,一般用在语音电话拨号系统中;连接词语音识别支持一个小的语法网络,其内部形成一个状态机,可以实现简单的家用电器的控制,而复杂的连接词语音识别系统可以用于电话语音查询、航空订票等系统;连续语音识别是指对说话人以日常自然的方式发音,通常特指用于语音录入的听写机。

5分钟弄懂:语音识别技术原理

简要给大家介绍一下语音怎么变文字的吧。希望这个介绍能让所有同学看懂。

首先,我们知道声音实际上是一种波。常见的mp3、wmv等格式都是压缩格式,必须转成非压缩的纯波形文件来处理,比如Windows PCM文件,也就是俗称的wav文件。wav文件里存储的除了一个文件头以外,就是声音波形的一个个点了。下图是一个波形的示例。

5分钟弄懂:语音识别技术原理

在开始语音识别之前,有时需要把首尾端的静音切除,降低对后续步骤造成的干扰。这个静音切除的操作一般称为VAD,需要用到信号处理的一些技术。要对声音进行分析,需要对声音分帧,也就是把声音切开成一小段一小段,每小段称为一帧。分帧操作一般不是简单的切开,而是使用移动窗函数来实现,这里不详述。帧与帧之间一般是有交叠的,就像下图这样:

语音识别技术简介

在人际交往中,言语是最自然并且最直接的方式之一。随着技术的进步,越来越多的人们也期望计算机能够具备与人进行言语沟通的能力,因此,语音识别这一技术也越来越受到关注。尤其,随着深度学习技术应用在语音识别技术中,使得语音识别的性能得到了显著提升,也使得语音识别技术的普及成为了现实。

自动语音识别技术,简单来说其实就是利用计算机将语音信号自动转换为文本的一项技术。这项技术同时也是机器理解人类言语的第一个也是很重要的一个过程。

语音识别技术简介

为了进一步解释计算机如何实现语音到文字的转换这一过程,我先把目前比较主流的自动语音识别系统的整体框架贴出来,然后再一一简要地对各部分进行说明。
语音识别技术简介

语音的识别过程主要分哪几步,常用的识别方法是什么?

语音识别是完成语音到文字的转换。自然语言理解是完成文字到语义的转换。语音合成是用语音方式输出用户想要的信息,用语音实现人与计算机之间的交互,主要包括语音识别、自然语言理解和语音合成。

相对于机器翻译,语音识别是更加困难的问题。机器翻译系统的输入通常是印刷文本,计算机能清楚地区分单词和单词串。而语音识别系统的输入是语音,其复杂度要大得多,特别是口语有很多的不确定性。人与人交流时,往往是根据上下文提供的信息猜测对方所说的是哪一个单词,还可以根据对方使用的音调、面部表情和手势等来得到很多信息。特别是说话者会经常更正所说过的话,而且会使用不同的词来重复某些信息。显然,要使计算机像人一样识别语音是很困难的。

语音识别过程包括从一段连续声波中采样,将每个采样值量化,得到声波的压缩数字化表示。采样值位于重叠的帧中,对于每一帧,抽取出一个描述频谱内容的特征向量。然后,根据语音信号的特征识别语音所代表的单词,语音识别过程主要分为五步,如下:

1.语音信号采集

语音信号采集是语音信号处理的前提。语音通常通过话筒输入计算机。话筒将声波转换为电压信号,然后通过A/D装置(如声卡)进行采样,从而将连续的电压信号转换为计算机能够处理的数字信号。

同步内容
--电子创新网--
粤ICP备12070055号