AI

卷积网络背后的直觉

转载自公众号:论智(ID:jqr_AI)
作者:Adel Nehme
编译:weakish

编者按:和数据科学研究生Adel Nehme一起,探索卷积神经网络(机器视觉和图像识别领域最重要的深度学习技术之一)背后的直觉。

背景

随着AI的突破持续吸引公众注意,人们开始不加区别地使用“人工智能”、“机器学习”、“深度学习”等术语。然而,了解这些术语的区别,有助于把握AI技术的发展趋势。

卷积网络背后的直觉
人工智能同心圆

我们可以把这三个术语想象成三个同心圆,其中人工智能包含了机器学习,机器学习又包含了深度学习。

简单来说,有一些任务,传统上认为需要通过人类认知活动才能完成,开发执行这些任务的计算机系统,即为人工智能。

而机器学习则是创建从大规模数据集中学习模式,并提供洞见的系统。机器学习本身可以分为三大类:

从普通程序员到AI大神,跨界的正确方式!

人工智能的飞速崛起,使得该领域出现了巨大的人才缺口,据说在北上广地区,一个机器学习算法的岗位拿到100K的薪水也并不是一件很困难的事情,这刺激了普通程序员学习人工智能,迫切希望在人工智能大热时实现转行。可是许多程序员不知道该如何快速有效地学习人工智能。

其实,既然已经具备了普通程序员的功底,再转人工智能方向并非难事,接下来我们就具体分析一下,普通程序员该如何正确学习人工智能方向的知识。

1. 熟练掌握基础理论知识

要成为人工智能领域,尤其是机器学习方向的程序员必须有一定的数学和算法基础,尽管各类框架使得现在的机器学习编程变得越来越简单,表面上可以不用在意太多的数学和算法细节,但实际上,即使是针对工程应用,一定程度的数学和算法理解以及对应的思维方式,能够在解决问题以及选择模型套用时提供许多的帮助。相关的知识理论基础包括:高等数学基础、统计学基础、线性代数、数值计算方法、运筹学。

当然,如果不打算进行特别深入的研究和扩展,以上内容并不需要都精通,但至少需要保持在知晓且能够形象化理解的范围内,只有在掌握这些基础的前提下,理解人工智能和机器学习相关的知识才能更加轻松顺利。

2. 相关基础工具的学习和应用

盘点一下那些不知不觉中已经渗入生活的AI技术...

人工智能正越来越多的渗透入人们的生活,改变人们的生活,从自然语言生成到语音识别、从医疗诊断到商业决策,AI逐渐开始显露出巨大的优势,并且它的脚步不会停止。

1. 自然语言生成(NLG)

自然语言生成是人工智能的一个子学科,它可以将海量的数据转换成人类可读的文本,通过这样的方式实现与人类的交流。目前主要的应用是为客户提供报告生成和市场摘要等服务。通过对数据的分析、挖掘理解,从数据中抽取出有效的信息并总结成文本输出。优秀的AI还能实现自动排版和美化,做到可读性与优良的可视化效果。

盘点一下那些不知不觉中已经渗入生活的AI技术...

目前该技术主要由Attivio, Automated Insights, Cambridge Semantics, Digital Reasoning, Lucidworks, Narrative Science, SAS, and Yseop等公司提供。

区块链和AI的的火爆结合,是顺应科技大时代潮流的产物?

人们常常觉得区块链和人工智能是两种截然不同的科技技术,那么你真正的理解它们吗?你知道他们是怎么运行的吗?

区块技术解析

区块链作为一种新兴技术,它对每个行业都可能造成影响。区块链的分布式系统与当今使用的固有集中式操作系统相对立。

采用分布式数据库架构形式,某些操作的记录和身份验证取决于多方的协议,而不仅仅是单一的权限。

与其他集中式技术相比,区块链-使操作更安全,更快速,更透明。

区块链和AI的的火爆结合,是顺应科技大时代潮流的产物?

区块链已经给金融领域带来了很大的影响,像比特币、以太坊和莱特币这样的加密货币已经成为当前的关注点。

区块链与互联网的本质不同

相对于互联网技术而言,区块链的本质有三个不同:

第一:改变了互联网的网状连接结构,成了链状;

别再误读了!一文读懂人工智能与人类智能的差异化

随着人工智能变得越来越聪明,关于AI将消灭人类的说法也不断涌现出来。事实上,很多大人物都在呼吁人们提起警惕。到现在,似乎AI支持者谷歌首席工程师雷·库兹韦尔对未来的乐观态度似乎已经不敌比尔·盖茨、伊隆·马斯克和史蒂芬·霍金提出的担忧。

诚然,我们确实有理由表示担忧,但未来并不一定会是一个黑暗的未来,因为我们可以有利用AI的更好方式,关键是认识到人类与机器智能之间的互补关系。说到底,人工智能与人类智能有着天壤之别,所以以后可以停止对二者的比较了。

如今,人们很容易相信人工智能已经变得像人类智慧一样聪明了——如果不是更聪明的话。比如,前一段时间,谷歌发布了Duplex AI,能够帮助用户完成外呼预定美发沙龙和餐馆等操作。由于它的声音几乎与人类一模一样,所以在整个过程中可以瞒过其对话伙伴,使之认为自己是人类。

此外,谷歌子公司DeepMind开发了一款人工智能,在最复杂的棋盘游戏中击败了世界冠军。而最近,人工智能又被证明它可以像训练有素的医生一样准确诊断眼疾......还有很多的事件可以表明,在不久的将来,机器人有可能会让人类身处失业的状态。

19个AI热门应用领域,你知道多少?

1. 自然语言生成(Natural Language Generation)

自然语言生成是人工智能的分支,研究如何将数据转化为文本,用于客户服务、报告生成以及市场概述。

2. 语音识别(Speech Recognition)

Siri就是一个典型的例子。
目前,通过语音应答交互系统和移动应用程序对人类语言进行转录的系统已多达数十万。

3. 虚拟助理(Virtual Agents)

虚拟助理是一种能与人类进行交互的计算机代理或程序,其中以聊天机器人最为著名。虚拟助理多用于客户服务和支持,并可以作为智能家居的管理者。

4. 机器学习平台(Machine Learning Platforms)

机器学习是计算机科学和人工智能技术的分支,它能提升计算机的学习能力。

作者: Benny Har-Even

我们再次为大家带来了预言家采访系列,本次任务是Imagination内部一名富有远见的思想者,他就是Paul Brasnett,PowerVR视觉与AI部分的高级研究经理。在Imagination Paul一共领导三个团队,其中两个研究神经网络加速的最新发展,第三个关注公司的芯片设计。在目前科技最热门的领域,Paul在机器学习方面具有独特的洞察力和见解。

预言家采访系列:Paul Brasnett,PowerVR视觉与AI事业部高级研究经理

首先,Paul,请你向大家介绍你的背景以及你是如何加入Imagination的

智慧城市的成功依赖于智能家居的成功

作者:西蒙·福雷斯特(Simon Forrest),Imagination互联与家居互联部门主管

走向智能家居

智能家居是智慧城市取得成功的关键,如今科技创新的爆发式增长使得很多公司都能够设计和生产出智能家居所需要的产品(或元素)。随着消费者逐渐接受这些技术,他们将会看到并理解这些技术所带来的成本节约和环境改善。

“智能家居”是一个比较宽泛的定义,很多行业分析师只是简单的要求至少安装一款智能产品就可以定义为智能家居了,比如互联网控制的供暖系统或一个简单的智能灯泡,但是对我来说智能家居是非常不同的:大部分产品和服务都应该是互相连接的,底层技术应该能够管理和安排这些服务并作出明智的决策,从而给消费者带来最大化的好处。

除了看和听之外,AI能拥有触觉吗?

AI近几年的快速发展离不开深度学习方法的深入研究,而深度学习提升AI能力的最显著表现,目前来看主要集中在两个方面:图像识别和语音识别。

通过对图像的语义分割,图像识别技术已经应用得特别广泛。在手机摄影、拍照购物、刷脸支付等各种领域,图像识别给我们带来了极大的便利。同时,基于语音识别的各种语音助手比如智能音箱等,也在悄然描画智能家居的未来。可以说,单单是在视觉和听觉这两个方面的技术突破,AI就已经给世界带来了巨大改变。

但是,人有五感,除了视觉和听觉之外,还有非常重要的触觉。曾经有个人做实验,看看蒙上眼睛堵上耳朵再绑手脚这人会怎样,结果差点儿整出精神病。

那么具体到AI这件事上,仅仅发展其视觉和听觉技术已经逐步呈现了“瘸腿走路”的特征。如今,或许是时候讨论一下给它加上触觉这件事了。

视觉和听觉长板下的触觉短板

视觉和听觉技术发展的优点是显而易见的,其最重要的作用也集中在两个字上:识别。

为什么视觉的识别和听觉的识别技术这么重要,而且被首先开发出来呢?笔者认为主要有以下几个方面的原因。

第一,视觉和听觉是判断某一个物体特性的基本方法。

2018年AI的五大发展趋势和带来了哪些益处

人类一直对于与自己相仿的机器人、以及人工智能(AI)的概念饶有兴致。好莱坞电影和科幻小说也一直启发着科学家们向着此方向不断努力。虽然AI的泡沫曾经破灭了多次,但是近年来,一些重大的发展与突破又一次将该领域带回到了公众面前。在 2017年,Gartner将通用AI放在了“技术成熟度曲线”的早期采用阶段。同时,它将深度学习和机器学习技术置于该曲线的顶峰。

我们需要理解的是:AI是几个相互关联的技术的总称术语。它包括:自然语言处理(Natural Language Processing,NLP)、机器学习、认知计算、神经网络、计算机视觉、机器人科学及其相关技术。在本文中,我们将解释所有这些技术的五大发展趋势,并了解它们所带来的益处。

1. 机器学习模式的大众化

机器学习的目的是使得计算机能够从数据中学习、在不依赖程序命令的情况下进行改进。这种学习最终可以帮助计算机建立模型,例如被用于预测天气的模型。在这里,我们来介绍一些利用机器学习的常用应用程序:

财务应用

同步内容
--电子创新网--
粤ICP备12070055号