机器学习

机器学习——特征工程基本流程

前言

特征是数据中抽取出来的对结果预测有用的信息,可以是文本或者数据。特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。过程包含了特征提取、特征构建、特征选择等模块。

特征工程的目的是筛选出更好的特征,获取更好的训练数据。因为好的特征具有更强的灵活性,可以用简单的模型做训练,更可以得到优秀的结果。“工欲善其事,必先利其器”,特征工程可以理解为利其器的过程。互联网公司里大部分复杂的模型都是极少数的数据科学家在做,大多数工程师们做的事情基本是在数据仓库里搬砖,不断地数据清洗,再一个是分析业务不断地找特征。 例如,某广告部门的数据挖掘工程师,2周内可以完成一次特征迭代,一个月左右可以完成模型的小优化,来提升auc。

1. 数据采集 / 清洗 / 采样

数据采集:数据采集前需要明确采集哪些数据,一般的思路为:哪些数据对最后的结果预测有帮助?数据我们能够采集到吗?线上实时计算的时候获取是否快捷?

现在已经出现了相当多的文章涉及机器学习及其保护我们免遭网络攻击的能力。尽管如此,我们也要清楚的去将理想与现实分开,看看机器学习(ML),深度学习(DL)和人工智能(AI)算法到底可以在网络安全中做什么。

人脸识别技术的真相

人脸识别是机器学习的直接应用,这项技术已经被消费者、行业和执法机关广泛采用,它可能为我们的日常生活带来了便利,但也有严重的隐私问题。人脸识别已经超过了人类的工作效率,但是,在某些应用中实际实现时还存在问题。

立足于九十年代MIT的Eigenfaces方法,人脸识别第一次成功的大规模实现是2014年Facebook的DeepFace项目,准确性在实验室条件下达到了人类水平。从2014年开始,更大的训练数据集、GPU以及神经网络架构的快速发展进一步提高了人脸识别在通向现实世界可靠应用的更为丰富的上下文中的效率。

人脸识别的应用可以分类两类:身份验证和识别。这两种场景起初都会把一组已知的主体注册到系统中(图库),在测试期间,提供一个新的主体(测试图像)。人脸验证会计算图库和测试图像之间一对一的相似性,从而确定两副图像是否是相同的主体。例如,iPhone X基于人脸的登录功能或者机场的边境检查就是使用了这样的生物特征身份认证解决方案。目前,HSBC和Ticketmaster都考虑在他们的移动应用程序中使用人脸验证。另一方面,人脸识别计算一对多的相似性,从而在预先做好识别的人物图库中正确地识别出测试图像。它的主要应用是把未标记的照片和已知的资料进行匹配。其中,执法机关会使用这项技术从人群中识别出他们感兴趣的人。

机器学习在机器人中的应用

相信大家在观看吴恩达机器学习公开课的第一节课中,印象比较深的有使用强化学习去训练与控制机器人,直升飞机,让它们学会新的技能。

那么,机器学习在机器人中有哪些应用呢?本文将对这个问题进行简单的介绍。

1.计算机视觉

因为“机器人视觉”不仅涉及到计算机算法,有些人会认为正确的术语是机器视觉或机器人视觉。机器人学家或工程师也必须选择摄像头硬件能够允许机器人处理物理数据。机器人视觉与机器视觉密切相关,后者用于引导机器人引导和自动检测系统。它们之间的微小差异可能在应用于机器人视觉的运动学中,其包括参考框架校准和机器人对其环境的物理影响的能力。

大量数据即网络上可用的视觉信息(包括注释/标记的照片和视频)的涌入推动了计算机视觉的进步,这反过来也有助于进一步基于机器学习的结构化预测学习技术,推动机器人视觉应用,如物体的识别和排序。一个分支的例子是无人监督学习的异常检测,例如能够使用卷积神经网络找到并评估硅晶片故障的建筑系统,由Biomimetic机器人和机器学习实验室的研究人员设计,该研究人员是非营利机构Assistenzrobotik的一部分电子伏特在慕尼黑。诸如雷达,激光雷达和超声波等超感知技术也推动了自主车辆和无人机的360度视觉系统的开发。

机器学习中安全与隐私问题(对抗性攻击)

近几年,机器学习异常火爆,可以用来解决各种各样的问题,但却很少有人意识到机器学习本身也容易受到攻击,终于Ian Goodfellow和Papernot首次将机器学习的攻击提出,并且做了很多非常重要的研究,这里给出这二位大牛的博客的翻译,有兴趣的朋友可以关注一下,觉得还是很有意思的研究。本文也是安全方面的学习,有兴趣的希望可以一起讨论学习~~

(一)背景

直到几年前,机器学习算法在许多有意义的任务上都没有很好地发挥作用,比如识别物体或翻译。因此,当机器学习算法没能做正确的事情时,这是规则,而不是例外。今天,机器学习算法已经进入了下一个发展阶段:当呈现自然产生的输入时,它们可以比人类表现得更好。机器学习还没有达到真正的人类水平,因为当面对一个微不足道的对手时,大多数机器学习算法都失败了。换句话说,我们已经达到了机器学习的目的,但很容易被打破。

机器学习常见算法分类汇总

作者:王萌

机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里总结了一下常见的机器学习算法,以供您在工作和学习中参考。

机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。

学习方式

根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。

监督式学习:

机器学习常见算法分类汇总

人工智能世界里的机器学习与深度学习

人工智能(Artificial Intelligence),英文缩写为AI。AI是一门让机器变得智能的科学研究,让机器像人类一样具备解决某些特定问题的能力。其实,AI可不是什么新事物,早在上世纪中叶就已经诞生了。1950年,一位名叫马文﹒明斯基的大四学生和同学一起建造了世界上第一台神经网络计算机,被看作是人工智能的起点。马文后来也被人称为“人工智能之父”,从那时到现在已经过了近70年。这些年AI技术一直不温不火,偶尔出现一些吸引人的技术,很快就消失殆尽了。直到最近,AI又重新回到人们的视线里,而且获得了几乎所有互联网大佬的青睐,将AI看作是未来技术发展的方向,并投入大量人力和资金去研究它。

AI之所以到现在才火爆起来是有原因的。早在70年前,计算机技术刚出现,计算能力和传感器技术都不发达,AI的理念虽然先进,却无实施的条件。众所周知,让机器具备学习的能力,要进行大量的学习计算,通过对已掌握的数据计算规律,从而知晓下一步该如何处理。甄别和计算数据的能力在70年前都不具备,所以AI技术的研究总是被搁浅。而现在则不同,云计算、虚拟化和大数据技术的出现,对数据的分析能力已经很强,再加上计算能力的提升,海量数据的计算数秒内就能完成,这给AI提供了良好的成长土壤,所以到了现在,AI不火都不行了。

机器学习概念性内容整理

机器学习的定义:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。

机器学习中的有监督学习,无监督学习,半监督学习

在机器学习(Machine learning)领域。主要有三类不同的学习方法:监督学习(Supervised learning)、非监督学习(Unsupervised learning)、半监督学习(Semi-supervised learning)。

监督学习:通过已有的一部分输入数据与输出数据之间的相应关系。生成一个函数,将输入映射到合适的输出,比如分类。

非监督学习:直接对输入数据集进行建模,比如聚类。

半监督学习:综合利用有类标的数据和没有类标的数据,来生成合适的分类函数。

一、监督学习

1、监督式学习(Supervised learning),是一个机器学习中的方法。能够由训练资料中学到或建立一个模式( learning model)。并依此模式猜測新的实例。

训练资料是由输入物件(一般是向量)和预期输出所组成。函数的输出能够是一个连续的值(称为回归分析)。或是预測一个分类标签(称作分类)。

2、一个监督式学习者的任务在观察完一些训练范例(输入和预期输出)后,去预測这个函数对不论什么可能出现的输入的值的输出。要达到此目的。学习者必须以"合理"(见归纳偏向)的方式从现有的资料中一般化到非观察到的情况。

人工智能与机器学习的不同之处

人工智能早已不是一个新名词,它的发展历史已经有几十年。从80年代早期开始,当时计算机科学家设计出可以学习和模仿人类行为的算法。在学习方面,最重要的算法是神经网络,但由于模型过于强大,没有足够的数据支持,导致不是很成功。然而,在一些更具体的任务中,使用数据来适应函数的想法获得了巨大的成功,这也构成了机器学习的基础。在模仿方面,人工智能在图像识别、语音识别和自然语言处理方面有着广泛的应用。专家们花费了大量时间去创建边缘计算,彩色型材,N-gram语言模型,语法树等,不料所获成绩平平。

传统的机器学习

机器学习(ML)技术在预测中发挥了重要作用,机器学习已经经历了多代,有一套完备的模型结构,如:

 • 线性回归
 • Logistic回归
 • 决策树
 • 支持向量机
 • 贝叶斯模型
 • 正则化模型
 • 集成模型
 • 神经网络

每一个预测模型都基于一定的算法结构,参数可进行调整。训练预测模型涉及以下步骤:

1.选择模型结构(例如,逻辑回归、随机森林等)。

2.用训练数据(输入和输出)对模型进行反馈。

3.学习算法将输出最优模型(即具有特定参数的模型,使训练误差最小化)。

同步内容
--电子创新网--
粤ICP备12070055号