机器人

2018年物流机器人的七大趋势

经过前几年的火爆,工业界和资本都开始对机器人持比较理性的态度,不再“野蛮生长”。这样的氛围也许会更有利于企业潜心钻研,打造真正符合客户需求的产品和技术。

趋势一:物流机器人运作过程日趋柔性化

这里的“柔性”,是和生产制造过程相对而言的。在生产线上,因制造工艺不能轻易更改,所以工业机器人的动作比较固定、重复性较高。但是在物流领域,从A点到B点的移动则可能有许多种路径,不确定性较大。

并且,在走完A点到B点路径的过程中,还可能遇到障碍物:一方面可能有其它机器人在移动,另一方面可能有人员走动等意外情况。这种多变的“柔性”流程对机器人提出了更高的要求。

趋势二:机器人与周边环境的交互日益增加

新一代机器人不仅能够在平面上移动,并且还能识别环境中的更多元素并与之互动。一个很典型的例子就是机器人乘电梯,如图2所示:某酒店中的服务机器人可以通过发射无线信号与电梯互动,进入其内部并选择正确楼层,从而将物品送到指定的楼层房间。笔者观察到:“乘电梯”的功能已经成为越来越多机器人品牌的标配。

趋势三:激光导航技术日渐普及

工业机器人常用的传感器解析

在工业自动化领域,机器需要传感器提供必要的信息,以正确执行相关的操作。机器人已经开始应用大量的传感器以提高适应能力。例如有很多的协作机器人集成了力矩传感器和摄像机,以确保在操作中拥有更好的视角,同时保证工作区域的安全等。在此枚举一些常用的可以集成到机器人单元里的各种传感器,供诸君参考。

二维视觉传感器

二维视觉基本上就是一个可以执行多种任务的摄像头。从检测运动物体到传输带上的零件定位等等。二维视觉在市场上已经出现了很长一段时间,并且占据了一定的份额。许多智能相机都可以检测零件并协助机器人确定零件的位置,机器人就可以根据接收到的信息适当调整其动作。

工业机器人常用的传感器解析

三维视觉传感器

双足步行机器人的ZMP与CoP检测

机器人步态分为静态步行和动态步行。当机器人做静态步行运动时,身体的各个部分运动速度很小,机器人的整体稳定性较易控制。静态步行稳定性采用机器人的重心地面投影点(Center of Gravity,简称CoG)作为稳定性标准,这种判定方法适用于运动较为缓慢的情况。

2018年全球AI突破性技术TOP10

人工智能是个高科技、宽领域、多维度、跨学科的集大成者,从立足大数据、围绕互联网的纯计算机应用,逐步衍生到人们日常生产生活的方方面面,在细微之处改善和改变着我们。目前,不少新技术、新模式已经逐步投入到现实运用,但是多数领域仍然处在推广、试验、研究阶段,如何把握推广人工智能技术的重大机遇,让人们像普及手机一样用上人工智能,这是我们这一代人必须面对的时代发展“必答题”。

2018年人工智能技术已在多方面实现突破性进展,国内外的科技公司都在不断尝试将人工智能应用于更多领域,不论科技巨头还是初创企业,都在致力于不断创新,推动技术进步,接下来我们就来看看十项中外人工智能领域富有突破性的技术。

一、基于神经网络的机器翻译

入选理由:翻译是“自然语言处理”的最重要分支,也是比较难的一支。早年间,机器翻译还被视作 “低级翻译”被嘲讽,如今神经网络的机器翻译准确性大大提高,堪比专业人工翻译。我们熟知的谷歌翻译、微软语音翻译以及搜狗语音识别等都是基于此项技术。

技术突破:机器翻译是科研人员攻坚了数十年的研究领域,其技术核心是一个拥有海量结点的深度神经网络,它可以自动的从语料库中学习翻译知识。由于神经网络能够比较好地模拟人脑神经元多层深度传递的过程,它在解决一些复杂问题的时候有着非常明显的突破性表现。

关于工业机器人,这些知识你必须了解!

工业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。

机器人越来越智能化,并在制造企业中担负起越来越重要的角色。通过先进的IT与自动化技术来促进制造业的革新,以实现"智能化",提升效率,降低成本。

一、工业机器人的发展背景

从1920年,"Robot"这个词被捷克剧作家创造出来,到现在机器人已经发展了近百年,从最初的单纯用于搬运的工业机器人,到第二代具有视觉传感器以及信息处理技术的工业机器人,再到目前正在研究的"智能机器人",工业机器人的发展及应用日新月异。

二、工业机器人的应用场景

在短短50多年的时间中,机器人技术得到了迅速的发展,在众多制造业领域中,工业机器人应用最广泛的领域是汽车及汽车零部件制造业,并且正在不断地向其他领域拓展,如机械加工行业、电子电气行业、橡胶及塑料工业、食品工业、木材与家具制造业等领域中。

机器学习在机器人中的应用

相信大家在观看吴恩达机器学习公开课的第一节课中,印象比较深的有使用强化学习去训练与控制机器人,直升飞机,让它们学会新的技能。

那么,机器学习在机器人中有哪些应用呢?本文将对这个问题进行简单的介绍。

1.计算机视觉

因为“机器人视觉”不仅涉及到计算机算法,有些人会认为正确的术语是机器视觉或机器人视觉。机器人学家或工程师也必须选择摄像头硬件能够允许机器人处理物理数据。机器人视觉与机器视觉密切相关,后者用于引导机器人引导和自动检测系统。它们之间的微小差异可能在应用于机器人视觉的运动学中,其包括参考框架校准和机器人对其环境的物理影响的能力。

大量数据即网络上可用的视觉信息(包括注释/标记的照片和视频)的涌入推动了计算机视觉的进步,这反过来也有助于进一步基于机器学习的结构化预测学习技术,推动机器人视觉应用,如物体的识别和排序。一个分支的例子是无人监督学习的异常检测,例如能够使用卷积神经网络找到并评估硅晶片故障的建筑系统,由Biomimetic机器人和机器学习实验室的研究人员设计,该研究人员是非营利机构Assistenzrobotik的一部分电子伏特在慕尼黑。诸如雷达,激光雷达和超声波等超感知技术也推动了自主车辆和无人机的360度视觉系统的开发。

双足机器人的平衡控制

在最开始,双足机器人使用的平衡控制策略是「静态步行」(static walking)。这种策略的特点是:机器人步行的过程中,重心(COG,Center of Gravity)的投影始终位于多边形支撑区域(support region)内,这种控制策略的好处在于:机器人可以在行走动作中停止而不摔倒,但代价是行动速度非常迟缓(每一步需要花费10 秒甚至更长,因为需要保持重心的投影始终位于支撑区域,否则将不稳定)。

双足机器人的平衡控制

移动机器人避障方法简析

作者:张玉坤、刘伟

移动机器人是机器人的重要研究领域,人们很早就开始移动机器人的研究。世界上第一台真正意义上的移动机器人是斯坦福研究院(SRI)的人工智能中心于1966年到1972年研制的,名叫Shakey,它装备了电视摄像机、三角测距仪、碰撞传感器、驱动电机以及编码器,并通过无线通讯系统由二台计算机控制,可以进行简单的自主导航。Shakey的研制过程中还诞生了两种经典的导航算法:A*算法(the A* search algorithm)和可视图法(the visibility graph method)。虽然Shakey只能解决简单的感知、运动规划和控制问题,但它却是当时将AI应用于机器人的最为成功的研究平台,它证实了许多通常属于人工智能(Aritificial Intelligence, AI)领域的严肃的科学结论。从20世纪70年代末开始,随着计算机的应用和传感技术的发展,以及新的机器人导航算法的不断推出,移动机器人研究开始进入快车道。

移动机器人避障方法简析

移动机器人常用的导航定位技术及原理

不管什么类型的机器人,只要自主移动,就需要在家庭或其他环境中进行导航定位。自主导航作为一项核心技术,是赋予机器人感知和行动能力的关键。

机器人以什么步态移动最节能?

步态的选择,也就是我们是走路还是跑步,对于我们来说是非常自然的事,我们甚至都未曾想过它。我们慢慢地走路,快速地奔跑。如果我们在跑步机上慢慢加快速度,我们就会从一开始的慢慢走路,在某个临界点变成跑步;这一切地发生都是不由自主地,因为那样感觉更舒服。

机器人以什么步态移动最节能?

我们已经习惯了这一点,当我们看到奥运会赛道上有人快速地走路时,就会觉得特别有趣。几乎所有动物都会自动选择步态,尽管有时步态不同。例如,马往往以慢速行走,以中速疾驰,以高速驰骋。是什么让我们觉得低速适合行走,高速适合跑步呢?我们怎么知道我们必须改变选择,为什么我们不像马那样跳跃或驰骋呢?究竟是什么构成了走路、跑步、小跑、疾驰以及其他可以在自然界找到的步态?

密歇根大学机器人与运动实验室(RAM-Lab)的C. David Remy博士领导的研究团队对此及相关问题非常感兴趣,原因非常简单:他们希望打造敏捷、快速而节能的腿式机器人。使用不同步态的能力可能是这项任务中的关键因素,因为对人类和动物有益的可能对腿式机器人同样有利。

同步内容
--电子创新网--
粤ICP备12070055号