图像处理

图像处理的多线程计算

图像处理的算法复杂度通常都比较高,计算也相应比较耗时。利用CPU多线程处理能力可以大幅度加快计算速度。但是,为了保证多线程处理的结果和单线程处理的结果完全相同,图像的多线程计算有一些需要特别考虑的地方。

基本思路:为了能让多个线程同时并行处理,那么各自处理的数据不能有交集,这很好理解。那么基本思路是将一副图像分成多个子块,每个子块数据肯定是没有交集的,每个线程对一个子块数据进行处理,完成后将所有子块处理结果合成最终图像。

首先,每个子块的大小当然是必须考虑的问题。通常当应用进行一个较长时间的操作,应该用合适的方式告知用户。既然我们把图像分子块处理,如果单个子块处理时间很短,那么每当有一个子块的数据处理完成,我们就可以立即把它相应的处理结果展示给用户。用户就会看到这个图像各个部分的处理结果不断展示出来,直至整个图像完成。这样某种程度上用这种方式就是在告知用户正在处理进行中,避免为了把整个图像处理完成,用户需要等待太长时间。从这个角度来说,如果子块尺寸取的太大,每个子块计算时间肯定相应地加长,对于快速显示部分处理结果给用户是不利的。但是如果子块太小,子块总数就会增加,肯定会增加线程开销和其他一些开销(分割图像,分配子块数据等等),对于总的计算时间是不利的。这是一个权衡问题,可以根据具体情况确定。

图像处理:图像灰度化

灰度图像上每个像素的颜色值又称为灰度,指黑白图像中点的颜色深度,范围一般从0到255,白色为255,黑色为0。所谓灰度值是指色彩的浓淡程度,灰度直方图是指一幅数字图像中,对应每一个灰度值统计出具有该灰度值的象素数。

灰度就是没有色彩,RGB色彩分量全部相等。如果是一个二值灰度图象,它的象素值只能为0或1,我们说它的灰度级为2。用个例子来说明吧:一个256级灰度的图象,如果RGB三个量相同时,如:RGB(100,100,100)就代表灰度为100,RGB(50,50,50)代表灰度为50。

现在大部分的彩色图像都是采用RGB颜色模式,处理图像的时候,要分别对RGB三种分量进行处理,实际上RGB并不能反映图像的形态特征,只是从光学的原理上进行颜色的调配。

图像灰度化处理可以作为图像处理的预处理步骤,为之后的图像分割、图像识别和图像分析等上层操作做准备。

图像灰度化处理有以下几种方式:

1. 分量法

将彩色图像中的三分量的亮度作为三个灰度图像的灰度值,可根据应用需要选取一种灰度图像。

图像处理分类、一般流程与算法

常用的图像处理算法:数字图像处理基础、遥感数字图像处理、机器视觉、计算机视觉

图像处理程序:C++ OpenCV、Matlab与图像处理

数字图像处理-概述

其实,造成“不可能图形”(三角形的三个角都是90°)的并不是图形本身,而是你对图形的三维知觉系统,这一系列在你知觉图形的立体心理模型时强制作用。在把二维平面图形知觉为你三维立体心理图形时,执行这一过程的机制会极大地影响你的视觉系统。

正是在这一强制执行的机制的影响下,你的视觉系统对图形中的每一个点都赋予了深度。换句话说,一幅图像的某些二维结构元素和你三维知觉解释系统的某些结构元素相对应。二维直线被解释成三维直线。二维的平面被解释为三维的平面。在透视图像中,锐角和钝角都被解释为90°角。外面的线段被看作是外形轮廓的分界线。这一外形分界线在你定义整个心理图像的外形轮廓时起着及其重要的作用。这说明,在没有相反信息的影响下,你的视觉系统总是假定你从一个主要视角观看事物。

三角形的每一个顶角都产生透视,三个90°的角,而且,每条边的距离变化不同。把三个顶角合成一个整体,就产生了一个空间不可能图形。

相对性:环境对比的影响

图像处理中的不适定问题(ill posed problem)

图像处理中不适定问题(ill posed problem)或称为反问题(inverse Problem)的研究从20世纪末成为国际上的热点问题,成为现代数学家、计算机视觉和图像处理学者广为关注的研究领域。数学和物理上的反问题的研究由来已久,法国数学家阿达马早在19世纪就提出了不适定问题的概念:称一个数学物理定解问题的解存在、唯一并且稳定的则称该问题是适定的(Well Posed).如果不满足适定性概念中的上述判据中的一条或几条,称该问题是不适定的。

典型的图像处理不适定问题包括:图像去噪(Image De-nosing),图像恢复(Image Restorsion),图像放大(Image Zooming),图像修补(Image Inpainting),图像去马赛克(image Demosaicing),图像超分辨(Image super-resolution )等。

迄今为止,人们已经提出许多方法来解决图像处理中的不适定性。但是如何进一步刻画图像的边缘、纹理和角形等图像中重要视觉几何结构,提高该类方法在噪声抑制基础上有效保持结构和纹理能力是有待深入研究的问题。

1 不适定图像处理问题的国内外研究现状评述

[收藏]图像处理的基本知识

调色板
调色板(Palette)也叫颜色查找表,是指在16色(每个像素4个bit,总共有16种颜色)或256色(每个像素8个bit,即一个字节,总共有256种颜色)显示系统中由图像中出现最频繁的16种或256种颜色所组成的查找表。对这些颜色按4位(16色)或8位(256色),即0-15或0-255进行编号,每一个编号(索引值)代表R,G,B,3个分量24位的颜色值。使用调色板的图像叫做调色板图像。对于调色板图像而言,它们的像素值并不是颜色值,而是颜色在调色板查找表中的索引号。

图像的颜色处理
自然界的颜色可以简单地分为黑白色(包括灰度级)和彩色两种。
彩色图像处理分为3个主要处理领域,即真彩色,假彩色和伪彩色处理领域。在真彩色处理中,被处理的图像一般从真彩色传感器中获得,例如彩色摄像头或彩色扫描仪;假彩色处理时一种尽量接近真彩色的人工彩色处理技术;伪彩色处理时将彩色分配给某种灰度(强度或强度范围),以增强辨识能力。

1、将256色位图转换为灰度图

位映像

滤波试验:不同噪声选用什么滤波器

在图像处理中,首先要对原始图像进行预处理,即将效果较差的图像处理为尽量符合后续工作的有效图像。这一步主要用到了图像增强技术(Image Enhancement)和图像复原技术(Image Restoration)。图像增强是主观的(subjective),没有特定标准需要增强到什么程度,只要满足用户的需求即可;而图像复原是客观的(objective),需要尽可能恢复为原始图像。今天我主要针对图像复原方法做了实验。

图像复原,主要是去噪。噪声来源灰常多,但主要可以分为三类:
1. 来自捕捉源的(acquisition/digitization),比如一个摄像机的镜头、A/D或者sensor;
2. 来自图像传输过程(image transmission),传输图像的信道包括无线电、微波、光缆等等,如果通过无线电传输,遇到个风吹雨雪的,自然会有各种噪声了;
3. 来自计算过程(computation),比如咱们将浮点型数据转化为整形处理,就会丢失部分信息,但这不属于错误,是把问题简化,所以这也是一种噪声。所以,图像复原主要是用各种滤波方法去除噪声。

图像处理之image stitching

背景介绍

图像拼接是一项应用广泛的图像处理技术。根据特征点的相互匹配,可以将多张小视角的图像拼接成为一张大视角的图像,在广角照片合成、卫星照片处理、医学图像处理等领域都有应用。早期的图像拼接主要是运用像素值匹配的方法。后来,人们分别在两幅图像中寻找拐点、边缘等稳定的特征,用特征匹配的方法拼接图像。本实验根据Matthew Brown (2005) 描述的方法,实现多张生活照的拼接。

特征点捕捉 (Interest Point Detection)

首先,拍摄两张场景有重合的照片。为了保证有足够多的公共特征点,照片的重合度应该保证在30%以上。将两张照片转换为灰度图像,对图像做σ=1的高斯模糊。在Matthew的文章中,他建立了一个图像金字塔,在不同尺度寻找Harris关键点。考虑到将要拼接的照片视野尺寸接近,故简化此步骤,仅在原图提取特征点。

图像处理基础(7):图像的灰度变换

前面几篇文章介绍的是图像的空间域滤波,其对像素的处理都是基于像素的某一邻域进行的。本文介绍的图像的灰度变换则不同,其对像素的计算仅仅依赖于当前像素和灰度变换函数。

灰度变换也被称为图像的点运算(只针对图像的某一像素点)是所有图像处理技术中最简单的技术,其变换形式如下:

s = T ( r )

其中,T 是灰度变换函数;r 是变换前的灰度;s 是变换后的像素。

图像灰度变换的有以下作用:
  •  改善图像的质量,使图像能够显示更多的细节,提高图像的对比度(对比度拉伸)
  •  有选择的突出图像感兴趣的特征或者抑制图像中不需要的特征
  •  可以有效的改变图像的直方图分布,使像素的分布更为均匀

常见的灰度变换

灰度变换函数描述了输入灰度值和输出灰度值之间变换关系,一旦灰度变换函数确定下来了,那么其输出的灰度值也就确定了。可见灰度变换函数的性质就决定了灰度变换所能达到的效果。

用于图像灰度变换的函数主要有以下三种:
  •  线性函数 (图像反转)
  •  对数函数:对数和反对数变换

图像处理基础(6):锐化空间滤波器

前面介绍的几种滤波器都属于平滑滤波器(低通滤波器),用来平滑图像和抑制噪声的;而锐化空间滤波器恰恰相反,主要用来增强图像的突变信息,图像的细节和边缘信息。平滑滤波器主要是使用邻域的均值(或者中值)来代替模板中心的像素,消弱和邻域间的差别,以达到平滑图像和抑制噪声的目的;相反,锐化滤波器则使用邻域的微分作为算子,增大邻域间像素的差值,使图像的突变部分变的更加明显。

本位主要介绍了一下几点内容:
  •   图像的一阶微分和二阶微分的性质
  •   几种常见的一阶微分算子
  •   二阶微分算子 - Laplace 拉普拉斯算子
  •   一阶微分算子和二阶微分算子得到边缘的对比

一阶微分和二阶微分的性质

既然是基于一阶微分和二阶微分的锐化空间滤波器,那么首先就要了解下一阶和二阶微分的性质。

图像的锐化也就是增强图像的突变部分,那么我们也就对图像的恒定区域中,突变的开始点与结束点(台阶和斜坡突变)及沿着灰度斜坡处的微分的性质。微分是对函数局部变化率的一种表示,那么对于一阶微分有以下几个性质:

图像处理基础(5):双边滤波器

双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。

双边滤波器之所以能够做到在平滑去噪的同时还能够很好的保存边缘(Edge Preserve),是由于其滤波器的核由两个函数生成:
  •   一个函数由像素欧式距离决定滤波器模板的系数
  •   另一个函数由像素的灰度差值决定滤波器的系数

其综合了高斯滤波器(Gaussian Filter)和 α-截尾均值滤波器(Alpha-Trimmed mean Filter)的特点。高斯滤波器只考虑像素间的欧式距离,其使用的模板系数随着和窗口中心的距离增大而减小;Alpha截尾均值滤波器则只考虑了像素灰度值之间的差值,去掉 α% 的最小值和最大值后再计算均值。

双边滤波器使用二维高斯函数生成距离模板,使用一维高斯函数生成值域模板。

距离模板系数的生成公式如下:

图像处理基础(5):双边滤波器

同步内容
--电子创新网--
粤ICP备12070055号