从普通程序员到AI大神,跨界的正确方式!

人工智能的飞速崛起,使得该领域出现了巨大的人才缺口,据说在北上广地区,一个机器学习算法的岗位拿到100K的薪水也并不是一件很困难的事情,这刺激了普通程序员学习人工智能,迫切希望在人工智能大热时实现转行。可是许多程序员不知道该如何快速有效地学习人工智能。

其实,既然已经具备了普通程序员的功底,再转人工智能方向并非难事,接下来我们就具体分析一下,普通程序员该如何正确学习人工智能方向的知识。

1. 熟练掌握基础理论知识

要成为人工智能领域,尤其是机器学习方向的程序员必须有一定的数学和算法基础,尽管各类框架使得现在的机器学习编程变得越来越简单,表面上可以不用在意太多的数学和算法细节,但实际上,即使是针对工程应用,一定程度的数学和算法理解以及对应的思维方式,能够在解决问题以及选择模型套用时提供许多的帮助。相关的知识理论基础包括:高等数学基础、统计学基础、线性代数、数值计算方法、运筹学。

当然,如果不打算进行特别深入的研究和扩展,以上内容并不需要都精通,但至少需要保持在知晓且能够形象化理解的范围内,只有在掌握这些基础的前提下,理解人工智能和机器学习相关的知识才能更加轻松顺利。

2. 相关基础工具的学习和应用

熟练掌握基础理论的同时,还要掌握相应的编程语言。目前机器学习最为普遍的语言是Python,大多数主流机器学习框架已经提供了Python接口。Python语法简单,上手较为容易,同时有较强的语言表达能力,又很容易与其他语言的项目进行交互,这些特点使之成为了在机器学习领域必学的编程工具之一, 另外还必须掌握像Jupyter notebook这些常用的开发辅助工具。

在Python中有大量的机器学习相关框架、数学工具和数据处理工具,在这里针对性地推荐一些入门级的关键工具。

① numpy、scipy、matplotlib(Python进行科学计算时常用的一些基本工具)

numpy中包含对矩阵(含高阶矩阵)等内容的计算和变换;几乎所有Python上的数据及机器学习处理框架均提供了numpy的ndarray形式的数据交换接口;

scipy中包含更复杂一点的计算模型,诸如傅里叶变换、滤波器等;

matplotlib则是与之配合紧密的绘图库,能够提供较好的可视化功能。

② pandas

pandas是一个以数据表形式组织和操作数据,并能够方便地结合numpy、matplotlib进行统计、运算和可视化的工具包。

3. 进阶人工智能的重点:机器学习和深度学习

有了基础理论知识和工具之后,便可以尝试目前最为前沿的AI技能——机器学习和深度学习。

对于机器学习,建议先参考一些入门课程,而后再进阶有难度的课程,并且在学习课程的同时进行一些编程实践,有助于更快地掌握知识。

至此,对于人工智能,特别是机器学习和深度学习,已经可以算作入门了。接下来如果还想继续发展,则应当认真考虑具体的发展规划,并进行更加系统化的学习。

其实机器学习方面,仍然存在很多工程问题,如新算法的编程实现、大规模并行计算和分布式计算,甚至计算用硬件的研制等等。这个方向上,传统程序员出身仍有良好的基础,可以深入发展;如果对机器学习、深度学习兴趣浓厚,跟读最新的论文,思考和研究新的模型、算法,同样也是很好的出路;如果对数据敏感,专注于数据的分析处理,也是不错的选择。

以上给出的学习方法是按照大部分普通程序员的情况来建议的,并不一定适用于每个人,尤其是编程新手。条条大路通罗马,肯定也还有人能找到其他更适合自己快速学习和转型的方法。

本文转自:博客园 - 楚才国科,转载此文目的在于传递更多信息,版权归原作者所有。

--电子创新网--
粤ICP备12070055号