龙骑士 的blog

让计算机拥有一双眼睛,人工智能科学家已经努力了半个世纪

最近斯坦福大学一篇论文《Deep neural networks are more accurate than humans at detecting sexual orientation from facial images》一出,舆论哗然,该论文研究指出,计算机算法可以从面相判断一个人的性取向,引发了对隐私、道德、伦理问题的争议。然而回过头去看,这原本是一个卷积神经网络应用的技术文章,在人工智能领域,它是图像识别和机器人视觉的核心部分。

图像识别技术,是人工智能道路上的一座高峰,如今你可以看到包括个人相册图片管理、刷脸解锁手机、刷脸上班打卡等广泛应用。你一定好奇,图像识别是什么?如何让机器理解一张图甚至一个动态的生物?背后又用到了哪些技术?

今天,我们就从源头挖一挖图像识别的概念、技术和应用。

什么是“图像识别”?

从概念来看,图像识别是指利用计算机对图像进行处理、分析和理解,以识别不同模式的目标和对像(人物、场景、位置、物体、动作等)的技术。

而图像识别算法一般采用机器学习方法,模拟人脑看图,随后计算机依靠大量的数据,理解图像,最后建立相关的标签和类别。整个识别过程的核心,就是神经网络,经过优胜劣汰,目前已经发展到卷积神经网络(CNN或ConvNets)。

关于机器学习你必须了解的十个真相

作为一个经常向非专业人士解释机器学习的人,我整理了以下十点内容作为对机器学习的一些解释说明。

1、机器学习意味着从数据中学习;而AI则是一个时髦的词。机器学习并不像天花乱坠的宣传那样:通过向适当的学习算法提供适当的训练数据,你可以解决无数的难题。把它称之为AI吧,如果这有助于销售你的AI系统的话。但你要知道,AI只是一个时髦的词,这只代表了人们对它的期望而已。

2、机器学习主要涉及到数据和算法,但最主要的还是数据。机器学习算法特别是深度学习的进步,有很多令人兴奋的地方。但数据是使机器学习成为可能的关键因素。机器学习可以没有复杂的算法,但不能没有好的数据。

3、除非你有大量的数据,否则你应该坚持使用简单的模型。机器学习根据数据中的模式来训练模型,探索由参数定义的可能模型的空间。如果参数空间太大,就会对训练数据过度拟合,并训练出一个不能使自己一般化的模型。如果要对此做详细解释的话,需要进行更多的数学计算,而你应该把这一点当作为一个准则,让你的模型尽可能得简单。

AI惊艳世界的10个瞬间: 10个生成式对抗系统的最佳应用

说起“教授”计算机如何完成人类工作,生成式对抗系统(GAN)是现有最有效的手段之一。虽然人们一直被告知“竞争可以激发出更好的表现”,但是只有在有了生成式对抗系统之后这一“从竞争中学习”的逻辑才被发展到了造福产业生产的高度。

具体来说,生成式对抗系统是由不同的AI实体彼此竞争,以达到更好地解决自己任务的目的。想象一下,如果有一个恶意软件程序和一个安保机器人程序同时对抗,彼此都毫不放松的想要在对方的制约下更好的完成自己的职责。那么在这个过程中,他们双方都可以将自己的任务(入侵VS保护)完成的越来越好。

生成式对抗系统最初是由蒙特利尔大学的 Ian Goodfellow 首先创造出来。而最近,它已经向人们显示出了“无监督学习”的强大威力。

那么究竟生成式对抗系统是如何工作的呢?

每个生成式对抗系统都有两个相互竞争的神经网络。其中一个将噪音录入并且生成样本(生成器)。而另一网络则能够分辨正常的实验数据和从生成器获得的样本(分辨器)。这两个网络在进行一个持续的游戏,生成器会一直学习如何能够成功欺骗分辨器,而分辨器则能逐步增强自己分辨两种数据的能力。这两个系统同时接受长期的训练,终于在百万次的“对抗”之后,生成器生成的样本已经和真实的数据几乎没有差异。

给人工智能降点温:深度学习不是万能良药

近几年,深度学习已经进入一定程度的狂热状态,人们正试图用这个技术解决每一个问题。然而,深度学习真是万能的吗?阅读此文后,你便能够从深层理解为什么深度学习并不是想象的那般“神话”了。

写在前面

近日,在深度学习领域出现了一场热烈的争论。这一切都要从 Jeff Leek 在 Simply Stats 上发表了一篇题为《数据量不够大,别玩深度学习》(Don’t use deep learning your data isn’t that big)的博文开始。作者 Jeff Leek 在这篇博文中指出,当样本数据集很小时(这种情况在生物信息领域很常见),即使有一些层和隐藏单元,具有较少参数的线性模型的表现是优于深度网络的。为了证明自己的论点,Leek 举了一个基于 MNIST 数据库进行图像识别的例子,分辨 0 或者 1。他还表示,当在一个使用仅仅 80 个样本的 MNIST 数据集中进行 0 和 1 的分类时,一个简单的线性预测器(逻辑回归)要比深度神经网络的预测准确度更高。

入行AI最需要的五大技能

摘要: 作为一名软件工程师,我们应该活到老学到老,时刻与不断发展的框架、标准和范式保持同步。同时,还要能活学活用,在工作中使用最合适的工具,以提高工作效率。随着机器学习在越来越多的应用程序中寻得了一席之地,越来越多的程序员加入AI领域,那么,入行AI领域需要哪些技能呢?

把机器学习当做一种技能

作为一名软件工程师,我们应该活到老学到老,时刻与不断发展的框架、标准和范式保持同步。同时,还要能活学活用,在工作中使用最合适的工具,以提高工作效率。随着机器学习在越来越多的应用程序中寻得了一席之地,它成为了广大工程师迫切希望掌握的一门课题。

机器学习比一个新的框架更难掌握。要成为一名高效的实践者,你需要深入理解该领域相关的理论,广泛了解这个行业的现状,以及具备以非确定性的方式构建问题的能力。

你可以在网上找到很多教程来教你如何在一个精心挑选过的数据集上训练一个现成的模型,并使之达到不错的准确性。事实上,具备更多的相关技能是成为一个高效机器学习工程师的关键。

以下是我们与50多个顶尖机器学习团队的一些对话,他们来自海湾地区和纽约,这次来到Insight公司是为了探求人工智能从业者需要共同面对的问题​​,并希望能够加快自己融入应用人工智能领域的步伐 。

十大必须掌握的机器学习算法,你都知道了吗?

来源:AI研习社
作者:杨熹

通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。

每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普。 以后有时间再对单个算法做深入地解析。

今天的算法如下:
1.决策树
2.随机森林算法
3.逻辑回归
4.SVM
5.朴素贝叶斯
6.K最近邻算法
7.K均值算法
8.Adaboost算法
9.神经网络
10.马尔可夫

1. 决策树

根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。

十大必须掌握的机器学习算法,你都知道了吗?

深度学习:远非人工智能的全部和未来

作者:Fabio Ciucci

人工智能的这一波热潮毫无疑问是由深度学习引发的,自吴恩达等人 2011 年发表「识别猫」研究后,深度学习及其引发的技术已经在图像识别、游戏等任务中超越人类,并让机器学习技术的应用带入人们的生活。这种 AlphaGo 背后的技术是否是未来人工智能的方向?Fabio Ciucci 给出了他的看法。

现在每一个人都在学习,或者正打算学习深度学习(DL),它是目前人工智能诸多流派中唯一兴起的一个。各个年龄阶段的数十万人学习着免费和收费的深度学习课程。太多的创业公司和产品的命名以「深度」开头,深度学习已然成了一个流行语,但其真正使用实际上很少。绝大多数人忽略了深度学习只占机器学习领域的 1%,而机器学习又只占到了人工智能领域的 1%。余下的 99% 则被用来处理实践中的绝大多数任务。一个深度学习专家无法与人工智能专家划上等号。

人工智能空前火爆 “智能时代”真的到来了吗?

当下,人工智能可谓热度空前。

自“阿尔法狗”(AlphaGo)完胜人类围棋顶尖高手后,有关人工智能的讨论就从未停歇。一时间,贴着人工智能标签的项目如雨后春笋般涌现,与人工智能业务相关的公司股价更是一路看涨。

不过,对于“人工智能”概念的暴热,也存在着“看多”与“看空”的分歧。有人认为,人工智能将是下一个“风口”,酝酿着大量新的产业、新的价值;而也有人说,这只不过是资本热潮下的又一轮泡沫,将很快破灭。

对于“山雨欲来风满楼”的人工智能,我们究竟应该如何看待它的这次兴起?

深度学习引爆智能热潮

人工智能(Artificial Intelligence)被认为是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。通俗来讲,人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。

这一概念最早是在1956年的达特茅斯夏季会议上提出的,它从诞生到现在经历了61年的历史,发展过程中充满坎坷。它的每一次崛起都伴随着某种重要技术的突破,而每一次遭遇瓶颈,也是由于人们对其过高的期望,超出了技术能达到的水准。

语音识别的前世今生 | 深度学习彻底改变对话式人工智能

“语音识别”的终极梦想,是真正能够理解人类语言甚至是方言环境的系统。但几十年来,人们并没有一个有效的策略来创建这样一个系统,直到人工智能技术的爆发。

在过去几年中,人们在人工智能和深度学习领域的突破,让语音识别的探索跨了一大步。市面上玲琅满目的产品也反映了这种飞跃式发展。本文将回顾语音识别技术领域的最新进展,研究促进其迅猛发展进程的元素,并探讨其未来以及我们距离可以完全解决这个问题还有多远。

背景:人机交互

多年来,理解人类一直都是人工智能的最重要任务之一。人们不仅希望机器能够理解他们在说些什么,还希望它们能够理解他们所要表达的意思,并基于这些信息采取特定的行动。而这一目标正是对话式人工智能(AI)的精髓。

对话式AI包含有两个主要类别:人机界面,以及人与人沟通的界面。在人机界面中,人类与机器往往通过语音或文本交互,届时机器会理解人类 ( 尽管这种理解方式是有限的 ) 并采取相应的一些措施。图1表明,这台机器可以是一个私人助理或某种聊天机器人。

人工智能会迎来第三个冬天吗?

作者:脑极体

近两年人工智能开始疯狂生长,各种人工智能将会颠覆产业、颠覆生活,甚至取代人类的“宏大叙事”接踵而至。似乎人工智能就是未来已经是板上钉钉的事情。

但如果暂时放下对人工智能的美好想象,坐下来平心静气的观察一下人工智能的历史,却可能产生不少另类的结论:

比如人工智能并不怎么前沿和未来,事实上人工智能比大部分我们日常生活中用到的科技都要“老气横秋”。从图灵上世纪40年代提出现代人工智能概念,到1956年达特茅斯学院的一次会议上诞生第一个人工智能程序,人工智能这东西至少已经是60岁高龄的“爷爷级”技术。

而且人工智能改变生活,代替人类工作也不是什么新鲜论调,这种说法在几十年里被反复抛出….结果呢,直到今天也没出现。

回顾这六十年,AI的发展绝不是一帆风顺的。尤其是两次堪称具有毁灭意义的,被广泛承认的AI之冬,很大程度上将学界伸入现实的AI产业进行了清零。

所以在AI火爆的今天,重新回顾这两次堪称产业灾难的事件很有意义。尤其当我们发现,今天的很多画面都只不过是场景重现的时候…….

第一次AI之冬:美好憧憬抵不过一场暴风雪

同步内容
--电子创新网--
粤ICP备12070055号