风清扬 的blog

人工智能世界里的机器学习与深度学习

人工智能(Artificial Intelligence),英文缩写为AI。AI是一门让机器变得智能的科学研究,让机器像人类一样具备解决某些特定问题的能力。其实,AI可不是什么新事物,早在上世纪中叶就已经诞生了。1950年,一位名叫马文﹒明斯基的大四学生和同学一起建造了世界上第一台神经网络计算机,被看作是人工智能的起点。马文后来也被人称为“人工智能之父”,从那时到现在已经过了近70年。这些年AI技术一直不温不火,偶尔出现一些吸引人的技术,很快就消失殆尽了。直到最近,AI又重新回到人们的视线里,而且获得了几乎所有互联网大佬的青睐,将AI看作是未来技术发展的方向,并投入大量人力和资金去研究它。

AI之所以到现在才火爆起来是有原因的。早在70年前,计算机技术刚出现,计算能力和传感器技术都不发达,AI的理念虽然先进,却无实施的条件。众所周知,让机器具备学习的能力,要进行大量的学习计算,通过对已掌握的数据计算规律,从而知晓下一步该如何处理。甄别和计算数据的能力在70年前都不具备,所以AI技术的研究总是被搁浅。而现在则不同,云计算、虚拟化和大数据技术的出现,对数据的分析能力已经很强,再加上计算能力的提升,海量数据的计算数秒内就能完成,这给AI提供了良好的成长土壤,所以到了现在,AI不火都不行了。

机器人以什么步态移动最节能?

步态的选择,也就是我们是走路还是跑步,对于我们来说是非常自然的事,我们甚至都未曾想过它。我们慢慢地走路,快速地奔跑。如果我们在跑步机上慢慢加快速度,我们就会从一开始的慢慢走路,在某个临界点变成跑步;这一切地发生都是不由自主地,因为那样感觉更舒服。

机器人以什么步态移动最节能?

我们已经习惯了这一点,当我们看到奥运会赛道上有人快速地走路时,就会觉得特别有趣。几乎所有动物都会自动选择步态,尽管有时步态不同。例如,马往往以慢速行走,以中速疾驰,以高速驰骋。是什么让我们觉得低速适合行走,高速适合跑步呢?我们怎么知道我们必须改变选择,为什么我们不像马那样跳跃或驰骋呢?究竟是什么构成了走路、跑步、小跑、疾驰以及其他可以在自然界找到的步态?

密歇根大学机器人与运动实验室(RAM-Lab)的C. David Remy博士领导的研究团队对此及相关问题非常感兴趣,原因非常简单:他们希望打造敏捷、快速而节能的腿式机器人。使用不同步态的能力可能是这项任务中的关键因素,因为对人类和动物有益的可能对腿式机器人同样有利。

深度学习的训练和调参

感慨一下,人工智能这个名字挺有意思,这段时间也不知咋回事,朋友圈里都是学人工智能的,什么python,tf.......还有很多大神在互联网上开讲,也是赚了一笔,如今看来,真是百花齐放,一派繁荣的景象啊,有好有坏,大多数也只是人工的智能,就好像今天要讲的训练和调参,千万不要以为随随便便就可以得到一个好的结果,如果你没有丰富的经验、大量的实验,等于空谈。当然你完全可以借鉴别人的经验,甚至是借用别人的成果,但是绝大多数实际的情形,我们只能是在借鉴的基础上做自己的工作。这篇博客是我之前写的,如今放在博客里,记录下来,勉励同志们共同学习。

博客中已经省略了公式,图表引用网上资源,在此表示感谢!

近年来,深度学习作为机器学习中比较火的一种方法出现在我们面前,但是和非深度学习的机器学习相比(我将深度学习归于机器学习的领域内),还存在着几点很大的不同,具体来说,有以下几点:

深度学习中常见概念

批量,即Batch,是深度学习中的一个重要概念。批量通常指两个不同的概念——如果对应的是模型训练方法,那么批量指的是将所有数据处理完以后一次性更新权重或者参数的估计;如果对应的是模型训练中的数据,那么批量通常指的是一次输入供模型计算用的数据量。

基于批量概念的模型训练通常按照如下步骤进行:

(1)初始化参数

(2)重复以下步骤
     • A.处理所有数据
     • B.更新参数

和批量算法相对应的是递增算法,其步骤如下:

(1)初始化参数

(2)重复以下步骤
     • A.处理一个或者一组数据点
     • B.更新参数。

双目立体视觉的数学原理

双目立体视觉是计算机视觉的一个重要分支,即由不同位置的两台或者一台摄像机摄影测量学的传统设备标定法。利用至少17个参数描述摄像机与三维物体空间的结束关系,计算量非常大。

1.前言戏说

双目立体视觉是基于视差原理,由多幅图像获取物体三维几何信息的方法。在机器视觉系统中,双目视觉一般由双摄像机从不同角度同时获取周围景物的两幅数字图像,或有由单摄像机在不同时刻从不同角度获取周围景物的两幅数字图像,并基于视差原理即可恢复出物体三维几何信息,重建周围景物的三维形状与位置。

双目视觉有的时候我们也会把它称为体视,是人类利用双眼获取环境三维信息的主要途径。从目前来看,随着机器视觉理论的发展,双目立体视觉在机器视觉研究中发回来看了越来越重要的作用。本篇帖子主要研究了双目视觉的数学原理。

2.双目立体视觉的数学原理

双目立体视觉是基于视差,由三角法原理进行三维信息的获取,即由两个摄像机的图像平面和北侧物体之间构成一个三角形。一直两个摄像机之间的位置关系,便可以获得两摄像机公共视场内物体的三维尺寸及空间物体特征点的三维坐标。所以,双目视觉系统一般由两个摄像机构成。

机器学习、深度学习、和AI算法可以在网络安全中做什么?

本文作者:Alexander Polyakov,ERPScan的首席技术官和联合创始人、EAS-SEC总裁,SAP网络安全传播者。

现在已经出现了相当多的文章涉及机器学习及其保护我们免遭网络攻击的能力。尽管如此,我们也要清楚的去将理想与现实分开,看看机器学习(ML),深度学习(DL)和人工智能(AI)算法到底可以在网络安全中做什么。

首先,我必须让你失望,因为我们必须承认的是,尽管机器学习在图像识别或自然语言处理这两个领域取得了不错的成绩,但机器学习绝不会成为网络安全的silver bullet(银弹:喻指新技术,指人们寄予厚望的某种新科技)。总会有人试图在我们的系统中发现问题并试图绕过它们。更糟糕的是,这些先进的技术也正在被黑客们使用,例如黑客也可以使用机器学习来实现他们的意图。

机器学习不仅可以帮助我们完成典型的ML任务,包括回归(预测)、分类、聚类,推荐。ML也可以针对各种需求以不同的效率解决问题,这要根据你选择的算法而定。现在,我们将利用机器学习解决典型的网络安全任务。

简单读懂人工智能:机器学习与深度学习是什么关系

随着AlphaGo战胜李世石,人工智能和深度学习这些概念已经成为一个非常火的话题。人工智能、机器学习与深度学习这几个关键词时常出现在媒体新闻中,并错误地被认为是等同的概念。本文将介绍人工智能、机器学习以及深度学习的概念,并着重解析它们之间的关系。本文将从不同领域需要解决的问题入手,依次介绍这些领域的基本概念以及解决领域内问题的主要思路。

从计算机发明之初,人们就希望它能够帮助甚至代替人类完成重复性劳作。利用巨大的存储空间和超高的运算速度,计算机已经可以非常轻易地完成一些对于人类非常困难,但对计算机相对简单的问题。比如,统计一本书中不同单词出现的次数,存储一个图书馆中所有的藏书,或是计算非常复杂的数学公式,都可以轻松通过计算机解决。然而,一些人类通过直觉可以很快解决的问题,目前却很难通过计算机解决。这些问题包括自然语言理解、图像识别、语音识别,等等。而它们就是人工智能需要解决的问题。

心得 | 如何理解深度学习?

深度学习现在非常热,各种会议都要和这个沾点边。在深度学习许多领域都取得了非常不错的效果,如图像识别,语音识别,在安全领域甚至还有识别加密的协议等。如图片,语音领域实验室准确率都超过了90%。

深度学习的本质

心得 | 如何理解深度学习?

一个典型的机器学习样例如上,从开始的通过传感器(例如CMOS)来获得数据。然后经过预处理、特征提取、特征选择,再到推理、预测或者识别。最后一个部分,也就是机器学习的部分,绝大部分的工作是在这方面做的,也存在很多的paper和研究。

而中间的三部分,概括起来就是特征表达。良好的特征表达,对最终算法的准确性起了非常关键的作用,而且系统主要的计算和测试工作都耗在这一大部分。但这块实际中一般都是人工完成的。靠人工提取特征。

你可能不知道的7个深度学习实用技巧

前些天,深度学习工程师George Seif发表了一篇博文,总结了7个深度学习的技巧,主要从提高深度学习模型的准确性和速度两个角度来分析这些小技巧。在使用深度学习的时候,我们不能仅仅把它看成一个黑盒子,因为网络设计、训练过程、数据处理等很多步骤都需要精心的设计。作者分别介绍了7个非常实用小技巧:数据量、优化器选择、处理不平衡数据、迁移学习、数据增强、多个模型集成、加快剪枝。相信掌握了这7个技巧,能让你在实际工作中事半功倍!

你可能不知道的7个深度学习实用技巧

深度学习已经成为解决许多具有挑战性问题的方法。 在目标检测,语音识别和语言翻译方面,深度学习是迄今为止表现最好的方法。 许多人将深度神经网络(DNNs)视为神奇的黑盒子,我们输入一些数据,出来的就是我们的解决方案! 事实上,事情要复杂得多。

在设计和应用中,把DNN用到一个特定的问题上可能会遇到很多挑战。 为了达到实际应用所需的性能标准,数据处理、网络设计、训练和推断等各个阶段的正确设计和执行至关重要。 在这里,我将与大家分享7个实用技巧,让你的深度神经网络发挥最大作用。

深度学习带来的IoT挑战,以及未来的研究方向

深度学习在语音和视频方面的成功为IoT的基础服务打下了良好的基础,如何将它们的模型和方法部署在资源受限的设备上成了IoT领域的一个重要研究方向。到目前为止,深度学习方法难以应用于IoT和资源受限设备,因为它们需要大量的资源来运行,如处理器、电池能量和存储器。幸运的是,近期研究显示,深度神经网络的许多参数是冗余的,有时也不需要大量的隐层。有效的去除这些参数或层可以减少网络的复杂度,同时对输出不会有太大的影响。

挑战

1)缺少大型IoT数据集:

缺乏可用的实际IoT应用大数据集将深度学习模型引入IoT的一个主要障碍,因为深度学习需要更多的数据来实现更高的精度。此外,更多的数据也可以防止模型过度拟合。

2)预处理:

许多深度学习方法需要对数据进行预处理以产生更好的结果,对于IoT应用,预处理会更复杂,因为系统处理的是来自不同数据源的数据,可能有多种格式和分布,而且还可能有数据丢失。

3)安全和隐私:

同步内容
--电子创新网--
粤ICP备12070055号