无人车技术面临的八大挑战

无人驾驶汽车一定会实现,这大概已经是所有科技和汽车行业从业者的共识。分歧只不过是要不要人类司机时刻准备接管,以及到底何时才能量产。

但是,无人车要真正进入主流,仍要解决许多问题。以下就是这项技术面临的一些挑战:

1. 危急时刻,根本指望不上人类司机接管

三年前,谷歌无人车团队忽然推出一款无油门无刹车无方向盘的“三无”低速全自动无人车,就和这个问题有关。

此前,谷歌面向自家员工开展了自动驾驶汽车内测,车内摄像头记录下的测试人员表现,让无人车团队的工程师大感担忧。当时的项目负责人Chris Urmson说,员工们在车里的表现让他们不安。在汽车行驶过程中,测试者做出了很多愚蠢的行为,有人坐在驾驶座上却转身面向后座,甚至有人爬到后座找电脑、爬出车窗、搂搂抱抱……

后来,谷歌叫停了这个内测项目,再后来,就有了我们前边提到的完全不指望人类司机的“三无”小车。

现在在路测的无人车,或多或少都会要求人类司机在出现问题时从机器手中接管车辆。不过,参与路测的这些人类司机都是专业人员,苹果甚至向加州交管局建议说这些人类测试司机应该通过某些评测。如果换成普通人呢?

对于人类司机在危机时刻接管车辆的能力,不少技术人员持怀疑态度。把一个正在忙着玩王者农药甚至搂搂抱抱的人类拉过来,让他快速集中精力,接管一辆机器搞不定的高速行驶车辆,似乎是对人类的能力过于自信了。

上个月,斯坦福大学的一组科学家研究表明,大部分司机在分神做其他事的时候,忽然被要求集中精神开车,需要5秒以上的反应时间;还有一组同样来自斯坦福的科学家,在《科学》期刊的机器人子刊上发表论文称,在汽车高速和低速行驶时接管车辆是完全不同的两种体验。

好消息是,科技公司、汽车厂商纷纷预计在2020-2025年之间实现不指望人类接管的自动驾驶;坏消息是,指望人类在关键时刻挺身而出接管车辆的L3也有不少公司在做。

MIT机械工程教授John Leonard说:“L3自动驾驶是个无解的问题。”

2. 对执法者或公路安全人员的语音指令和手势信号作出响应

有些微妙的信号在人类看来很容易理解,例如交警的手势信号,或者试图与司机进行眼神交流的骑行者。但如何把人类的这种直觉传授给电脑?唯一的方式或许就是不断进行路测,让机器学会人类之间的社交互动方式。

3. 在车道标识不清的情况下安全驾驶

这同样是个直觉问题。最具挑战的驾驶环境需要无人驾驶汽车在没有车道线、反光球或明确道路边界的情况下制定驾驶决策。

值得注意的是,加州可能淘汰反光球,因为无人驾驶汽车无法有效识别这种车道标记工具。简而言之。公路基础设施必须加以调整才能与电脑控制的汽车展开充分互动。

4. 可靠地识别发生故障的交通信号灯

无人驾驶汽车的视觉系统现在已经能够可靠地识别交通信号灯。但在断电的时候制定正确决策却更加困难。同样地,这也需要将人类的直觉和与其他车辆的配合能力传授给机器。

5. 在车速较快的交叉路口左转

汇入高速行进的车流往往需要与对向驾驶员进行眼神交流。机器如何能让其他机器和人类知道他们的意图?研究人员考虑了电信号和车间通讯系统等解决方案。

6. 识别道路上的那些应该避开的物体

目前的机器视觉系统已经能够可靠地识别物体,但所谓的场景理解对计算机视觉系统来说更具挑战。这需要判断道路上的某个袋子是不是空的,或者里面是否放着一块砖头。

7. 在各种天气状况下安全行驶。LiDAR的软件升级或许有朝一日可以解决这一问题,但目前还未实现。

LiDAR系统不会因为强光或黑暗而出现误判,但在雨雪天气却会碰到一些问题。暴雨或暴雪会令干扰目前的车载雷达和LiDAR系统,因此必须有人类介入。

8. 网络安全。目前没有证据显示无人驾驶汽车比其他联网电脑更加安全。

无人驾驶汽车是一系列联网的电脑和传感器组成的集合,他们通过无线网络与外部世界相连。对无人驾驶汽车而言,如何阻止恶意破坏者的入侵或许是最严峻的挑战,恐怖分子甚至可能把无人驾驶汽车当成武器来使用。

李杉 李林 编译自 《纽约时报》
量子位 报道 | 公众号 QbitAI

--电子创新网--
粤ICP备12070055号