回顾:GPU的工作原理

除了 CPU(中央处理器)以外,SoC(System On a Chip:片上系统)另一个重要的组成部分是图像处理单元(Graphical Processing Unit),就是俗称的 GPU。

大家或许都知道玩 3D 游戏少不了它,但具体发挥什么作用也许说不清楚,这回我们就来揭开 GPU 的神秘面纱。

3D 模型

GPU 专门用于快速完成一些特定类型的数学运算,特别是对于浮点、矢量和矩阵的计算,能将 3D 模型的信息转换为 2D 表示,同时添加不同的纹理和阴影效果,所以 GPU 在硬件里也是比较特殊的存在。


3D 模型是由许许多多小三角形组成的,通过 X、Y、Z 坐标定义每个三角形的顶点。实际处理中,小三角形的顶点会相互重合,如果一个复杂的模型由 500 个小三角形组成,最后需要定义的顶点数并没有 1500 个那么多。

而要将一个抽象的 3D 模型展现出来,三种要素不可缺少:位移、旋转(三轴)和缩放,所有这些操作统称为转换(transformation)。为了不陷入复杂繁琐的数学运算,处理转换(transformation)最佳的方式就是运用 4x4 的矩阵。

从 3D 建模到最终显示在屏幕上,GPU 渲染场景使用的是流水线操作。早些时候流水线操作是固定不能作任何改动的,整个操作由读取三角形的顶点数据开始,接着 GPU 处理完后进入帧缓冲区(frame buffer),准备发送给显示器。GPU 也能对场景进行某些特定效果的处理,不过这些都是由工程师设计固定好的,能提供的选项很少。

可编程着色器(Programmable shaders)

在 Android 仍在萌芽之时,桌面级的 GPU 就开始可以对流水线部分的操作进行编程。随着 OpenGL ES 2.0 标准的推出,移动版的 GPU 也开始支持可编程操作,这些可编程的部分被称作着色器(shaders)。

最重要的两个着色器是顶点着色器(vertex shader)和片段着色器(fragment shader)。每个顶点都会调用一次顶点着色器,所以在渲染一个三角形时顶点着色器需要被调用三次;而片段着色器,我们可以简单的将每个片段(fragment)想象成屏幕上的每一个像素点,因此每生成一个像素片段着色器就被会调用一次。


两个着色器充当不同的角色,顶点着色器主要负责将 3D 模型的数据转化为现实世界中的位置以及纹理贴图或者光源,再进行转换(transformation);片段着色器则用于为每个像素设置相关的颜色。简单一点的说明:顶点着色器就是处理顶点相关的信息,片段着色器就是处理画面的颜色信息。

仔细观察你会注意到每个顶点的处理都是相互独立的,同样每个片段的处理也是如此,这意味着 GPU 能够并行运行着色器,事实上 GPU 也是这么干的,绝大多数的移动 GPU 都有多个着色器核心(可编程执行着色器功能的独立单元称之为着色器核心)。

来源:网络,转载此文目的在于传递更多信息,版权归原作者所有。

最新文章