机器学习算法基础概念总结

(1)10折交叉验证:

英文名是10-fold cross-validation,用来测试算法的准确性。是常用的测试方法。将数据集分成10份。轮流将其中的9份作为训练数据,1分作为测试数据,进行试验。每次试验都会得出相应的正确率(或差错率)。10次的结果的正确率(或差错率)的平均值作为对算法精度的估计,一般还需要进行多次10折交叉验证,在求其平均值,对算法的准确性进行估计。

(2)极大似然估计:

极大似然估计,只是一种概率论在统计学中的应用,它是参数评估的方法之一。说的 已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计通过若干次实验,观察其结果,利用结果推出参数的大概值。极大似然估计是建立在这样的思想上的:已知某个参数能使这个样本出现的概率最大。我们当然不会再去选择其他其他小概率的样本,所以干脆就把这个参数作为估计的真实值。

(3)在信息论中,熵表示的是不确定性的量度。

信息论的创始人香农在其著作《通信的数学理论》中提出了建立在概率统计模型上的信息度量。他把信息定义为”用来消除不确定性的东西“。熵的定义为信息的期望值。

ps:熵指的是体系的混乱程度,它在控制论,概率论,数论,天体物理,生命科学等领域都有重要的应用,在不同的学科中也有引申出更为具体的定义,是各个领域十分重要的参量。熵由鲁道夫.克劳修斯提出,并应用在热力学中。后来在,克劳德.埃尔伍德.香农 第一次将熵的概念引入到信息论中来。

(4)后验概率是信息论的基本概念之一。

在一个通信系统中,在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验证概率。后验概率是指在得到”结果“的信息后重新修正的概率,如贝叶斯公式中的。是执果寻因的问题。后验概率和先验概率有着不可分割的联系,后验的计算要以先验概率为基础,其实说白了后验概率其实就是条件概率。

(5)PCA 主成分分析:

优点:降低数据的复杂性,识别最重要的多个特征。

缺点:不一定需要,且可能损失有用信息。

适用适用类型:数值型数据。

技术类型:降维技术。

简述:在PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系的选择是由数据本身决定的。第一个新坐标轴选择时原始数据中方差最大的方向,第二个新坐标轴的选择和第一个坐标轴正交且具有最大方差的方向。该过程一直重复,重复次数为原始数据中特征的数目。会发现大部分方差都包含在最前面的几个新坐标轴中。因此,可以忽略余下的坐标轴,即对数据进行了降维处理。除了PCA主成分分析技术,其他降维技术还有ICA(独立成分分析),因子分析等。

(6)将不同的分类器组合起来,而这种组合结果则被称为集成方法(ensemble method)或者元算法(meta-algorithm)。

(7)回归算法和分类算法很像,不过回归算法和分类算法输出标称型类别值不同的是,回归方法会预测出一个连续的值,即回归会预测出具体的数据,而分类只能预测类别。

(8)SVD(singular value decomposition) 奇异值分解:

优点:简化数据,去除噪声,提高算法的结果。

缺点:数据转换可能难以理解。

适用数据类型:数值型数据。

ps:SVD是矩阵分解的一种类型。

总结:SVD是一种强大的降维工具,我们可以利用SVD来逼近矩阵并从中提取重要特征。通过保留矩阵80%~90%的能量,就可以得到重要的特征并去掉噪声。SVD已经运用到多个应用中,其中一个成功的应用案例就是推荐引擎。推荐引擎将物品推荐给用户,协同过滤则是一种基于用户喜好和行为数据的推荐和实现方法。协同过滤的核心是相似度计算方法,有很多相似度计算方法都可以用于计算物品或用户之间的相似度。通过在低维空间下计算相似度,SVD提高了推荐引擎的效果。

(9)共线性:是指线性回归模型中的解释变量之间由于存在精确的相关关系或高度相关关系而使模型估计失真或难以估计。

来源:CSDN,作者:蓝天的IT生涯,转载此文目的在于传递更多信息,版权归原作者所有。
原文:https://blog.csdn.net/lantian0802/article/details/38333479
版权声明:本文为博主原创文章,转载请附上博文链接!

推荐阅读