图像处理基本概念笔记(二)

21、均值滤波

均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。

不足之处:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。

22、高斯滤波

高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。

中文名 高斯滤波
定 义 实质上是一种信号的滤波器
应 用 图像处理,计算机视觉
方 式 离散化窗口滑窗卷积、傅里叶变换

23、双边滤波

双边滤波(Bilateralfilter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。

双边滤波器的好处是可以做边缘保存(edge preserving),一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器顾名思义比高斯滤波多了一个高斯方差sigma-d,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。但是由于保存了过多的高频信息,对于彩色图像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波

双边滤波器是什么?

双边滤波(Bilateralfilter)是一种可以保边去噪的滤波器。之所以可以达到此去噪效果,是因为滤波器是由两个函数构成。一个函数是由几何空间距离决定滤波器系数。另一个由像素差值决定滤波器系数。可以与其相比较的两个filter:高斯低通滤波器和α-截尾均值滤波器(去掉百分率为α的最小值和最大之后剩下像素的均值作为滤波器)。双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合,

24、图像增强

增强图像中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。

中文名 图像增强
外文名 image enhancement
类 型 频率域法和空间域法
目 的 改善图像的视觉效果

图像增强可分成两大类:频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。后者空间域法中具有代表性的算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。

图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。基于空域的算法处理时直接对图像灰度级做运算,基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。

基于空域的算法分为点运算算法和邻域去噪算法。点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。邻域增强算法分为图像平滑和锐化两种。平滑一般用于消除图像噪声,但是 也容易引起边缘的模糊。常用算法有均值滤波、中值滤波。锐化的目的在于突出物体的边缘轮廓,便于目标识别。常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。

25、常见的图像增强方法

1. 对比度拉升

采用了线性函数对图像的灰度值进行变换

2. Gamma校正

采用了非线性函数(指数函数)对图像的灰度值进行变换

这两种方式的实质是对感兴趣的图像区域进行展宽,对不感兴趣的背景区域进行压缩,从而达到图像增强的效果

3. 直方图均衡化

将原始图像的直方图通过积分概率密度函数转化为概率密度为1(理想情况)的图像,从而达到提高对比度的作用。直方图均衡化的实质也是一种特定区域的展宽,但是会导致整个图像向亮的区域变换。当原始图像给定时,对应的直方图均衡化的效果也相应的确定了。

4. 直方图规定化

针对直方图均衡化的存在的一些问题,将原始图像的直方图转化为规定的直方图的形式。一般目标图像的直方图的确定需要参考原始图像的直方图,并利用多高斯函数得到。

5. 同态滤波器

图像的灰度图像f(x,y)可以看做为入射光分量和反射光分量两部分组成:f(x,y)=i(x,y)r(x,y).入射光比较的均匀,随着空间位置变化比较小,占据低频分量段。反射光由于物体性质和结构特点不同从而反射强弱很不相同的光,随着空间位置的变化比较的剧烈。占据着高频分量。基于图像是由光照谱和反射谱结合而成的原理设计的。

26、基于HSV空间的彩色图像增强方法

针对于灰度图像,我们主要有以上的几种处理方法,但是针对于彩色图像,由于存在RGB分量,故而不能直接将灰度图像的处理方法应用。因为直接对每一个分量使用灰度增强的方法会导致颜色的紊乱发生。

而我们可以将RGB图像转化为其他空间的图像,比如:我们可以将RGB空间的图像转换为HSV空间的图像。HSV分别指色调,饱和度,亮度。由于调整HSV三个不同的量,我们可以得到比较直观的

26、图像分割

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。1998年以来,研究人员不断改进原有的图像分割方法并把其它学科的一 些新理论和新方法用于图像分割,提出了不少新的分割方法。图像分割后提取出的目标可以用于图像语义识别,图像搜索等等领域。

中文名 图像分割
外文名 image segmentation
分割方法 阈值分割等
用途 图像语义识别,图像搜索
类型 计算机技术
学科 跨学科
发展实践 1998

27、边缘检测

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。这些包括(i)深度上的不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。 边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。

中文名 边缘检测
领域 图像处理和计算机视觉
目的 标识数字图像中亮度变化明显的点
原因 深度上的不连续
原因 表面方向不连续
原因 物质属性变化

28、检测方法

有许多用于边缘检测的方法, 他们大致可分为两类:基于搜索和基于零交叉。

基于搜索的边缘检测方法首先计算边缘强度,通常用一阶导数表示, 例如梯度模,然后,用计算估计边缘的局部方向, 通常采用梯度的方向,并利用此方向找到局部梯度模的最大值。

基于零交叉的方法找到由图像得到的二阶导数的零交叉点来定位边缘。 通常用拉普拉斯算子或非线性微分方程的零交叉点。

滤波做为边缘检测的预处理通常是必要的,通常采用高斯滤波。

已发表的边缘检测方法应用计算边界强度的度量,这与平滑滤波有本质的不同。 正如许多边缘检测方法依赖于图像梯度的计算,他们用不同种类的滤波器来估计x-方向和y-方向的梯度。

步骤:

① 滤波:边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测器的性能。需要指出,大多数滤波器在降低噪声的同时也导致了边缘强度的损失,因此,增强边缘和降低噪声之间需要折中。

② 增强:增强边缘的基础是确定图像各点邻域强度的变化值。增强算法可以将邻域(或局部)强度值有显著变化的点突显出来。边缘增强一般是通过计算梯度幅值来完成的。

③ 检测:在图像中有许多点的梯度幅值比较大,而这些点在特定的应用领域中并不都是边缘,所以应该用某种方法来确定哪些点是边缘点。最简单的边缘检测判据是梯度幅值阈值判据。

④ 定位:如果某一应用场合要求确定边缘位置,则边缘的位置可在子像素分辨率上来估计,边缘的方位也可以被估计出来。在边缘检测算法中,前三个步骤用得十分普遍。这是因为大多数场合下,仅仅需要边缘检测器指出边缘出现在图像某一 像素点的附近,而没有必要指出边缘的精确位置或方向。

边缘检测的实质是采用某种算法来提取出图像中对象与背景间的交界线。我们将边缘定义为图像中灰度发生急剧变化的区域边界。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此我们可以用局部图像微分技术来获得边缘检测算子。经典的边缘检测方法,是通过对原始图像中像素的某小邻域构造边缘检测算子来达到检测边缘这一目的的。

边缘检测算子:

一阶::Roberts Cross算子,Prewitt算子,Sobel算子, Kirsch算子,罗盘算子;

二阶: Marr-Hildreth,在梯度方向的二阶导数过零点,Canny算子,Laplacian算子。

29、工业相机基础知识

1. 焦距(Focal Length) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。

2. 光圈(Iris) 用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如 8mm /F1.4代表最大孔径为 5.7毫米 。F值越小,光圈越大,F值越大,光圈越小。

3. 对应最大CCD尺寸(Sensor Size) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1/2″、2/3″、1″和1″以上。

4. 接口(Mount) 镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Leica、M42x1、M75x0.75等。

5. 景深(Depth of Field,DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深越小;焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。

6. 分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米”(lp/mm)。分辨率越高的镜头成像越清晰。

7. 工作距离(Working distance,WD) 镜头第一个工作面到被测物体的距离。

8. 视野范围(Field of View,FOV) 相机实际拍到区域的尺寸。

9. 光学放大倍数(Magnification,ß) CCD/FOV,即芯片尺寸除以视野范围。

10. 数值孔径(Numerical Aperture,NA) 数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\2)的正弦值的乘积,计算公式为N.A=n*sin a/2。数值孔径与其它光学参数有着密切的关系,它与分辨率成正比,与放大率成正比。也就是说数值孔径,直接决定了镜头分辨率,数值孔径越大,分辨率越高,否则反之。

11. 后背焦(Flange distance) 准确来说,后倍焦是相机的一个参数,指相机接口平面到芯片的距离。但在线扫描镜头或者大面阵相机的镜头选型时,后倍焦是一个非常重要的参数,因为它直接影响镜头的配置。不同厂家的相机,哪怕接口一样也可能有不同的后倍焦。

30、开操作与开操作

开操作是先腐蚀再膨胀,开操作是先膨胀再腐蚀。灰度图像是求最大最小值,二值图像是进行与运算。

二值形态学:

1. 二值腐蚀的具体操作是:用一个结构元素(一般是3×3的大小)扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为1,则该像素为1,否则为0。中心及领域有一个点不是黑点,该点就被腐蚀成白点

2. 二值膨胀的具体操作是:用一个结构元素(一般是3×3的大小)扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为0,则该像素为0,否则为1。

目的:开操作可以平滑物体轮廓,断开狭窄的间断和消除细小的突出物。

闭操作可以消弭狭窄的间断,消除小的孔洞。

本文转自:微信号 - CV视觉网(cvvision),转载此文目的在于传递更多信息,版权归原作者所有。

最新文章